

Caractéristiques

Les amortisseurs de chocs industriels, amortisseurs de sécurité et freins de réglage hydrauliques sont principalement conçus pour le freinage contrôlé d' une masse déterminée.

Nos amortisseurs de chocs travaillent par l'amortissement hydraulique. Cette technologie éprouvée permet une absorption d'énergie considérable avec de petits encombrements. Grâce à notre expérience de plusieurs dizaines d'années, nous avons mis au point des produits fiables qui demandent que très peu d'entretien.

Vue d'ensemble de notre programme de fabrication:

- Amortisseurs de chocs industriels, réglables
- Amortisseurs de chocs industriels, autoréglables
- Amortisseurs de sécurité
- Freins de réglage hydrauliques

Nos produits sont conçus pour l'amortissement hydraulique. Avec l'accroissement permanent des exigences concernant la capacité d'amortissement, la robustesse et la longévité nous avons apporté une attention toute particulière à la précision de la fabrication de nos produits:

Amortisseurs de chocs industriels réglables STD

Il y a de nombreux domaines d'application pour les amortisseurs de chocs réglables. Leur construction permet une utilisation continue (absorption d'énergie!) et une adaptation universelle aux divers besoins des utilisateurs (vitesses d'impact différentes ainsi que absorption d'énergie indéterminée).

Amortisseurs de chocs industriels autoréglables SES

Afin de répondre aux exigences, nous tenons à votre disposition des amortisseurs de chocs industriels autoréglables de différents degrés de dureté - Dans notre vaste programme de fabrication se trouve certainement un amortisseur de choc correspondant à vos besoins. La construction de nos amortisseurs de chocs autorégables permet un service continu (absorption d'énergie!) et de compenser pendant la course, les différentes influences provenant de la masse, de la vitesse et de la force motrice.

Amortisseurs de sécurité SDN

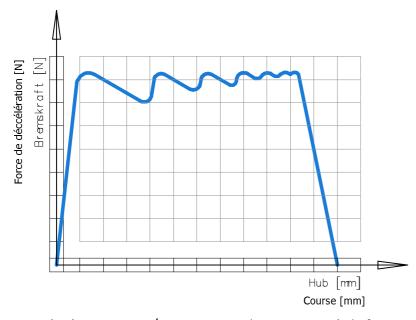
Il s'agit des amortisseurs de chocs hydrauliques qui permettent de choisir le type le mieux adapté aux besoins des utilisateurs. Les régulateurs garantissent une force de freinage constante sur toute la course. Cette force de freinage est réglable à volonté et de manière continue. Les amortisseurs de sécurité ont été développés pour une mise en service occasionnelle (arrêt d'urgence).

Domaines d'application: manutention, ponts roulants,

Freins de réglage hydrauliques HBV

Ces freins de réglage hydrauliques sont conçus pour le contrôle de la vitesse de pièces mobiles de machines (par exemple vérin pneumatique). Nos freins de réglage hydrauliques ont été développés pour des outillages de fabrication avec une vitesse d'avance constante. Grâce à l'utilisation de matériels traités, la construction de nos freins de réglage permet un service continu. L'utilisation d'une huile spéciale de qualité un bon fonctionnement, même en cas supérieure assure d'échauffement.

Contenu	Page
Introduction Fonctionnement des produits	2 - 4
Amortisseurs autoréglables SES	5 - 15
Amortisseurs réglables STD	16 - 26
Amortisseurs de sécurité SDN	27 - 29
Freins de réglage hydrauliques HBV	30 - 31
Formules de sélection Equipement optionnel	32 - 35


Fonctionnement d'un amortisseur de chocs industriel

Pendant la course de travail, la tige rentre et l'huile est refoulée dans les orifices d'étranglement par le piston. La fermeture des orifices d'étranglement se fait par le piston rentrant. Il en résulte une diminution de la vitesse de translation – la contre-pression et la force de freinage restent constantes. Le contrôle régulier de la déccélération permet de réduire considérablement les sollicitations de la machine. Un clapet anti-retour permet le retour rapide du piston et

l'amortisseur est opérationnel instantanément après une course de travail.

Distribution de force motrice sur la course

Si l'amortisseur de chocs est ajusté correctement, la restitution de la force est constante. Ce type d'amortisseur diffère d'autres systèmes d'amortissement par les avantages suivants:

- Force de freinage constante sur toute la course
- Il n'y a pas de pics de force
- Diminution de la charge de machine

Les amortisseurs de chocs hydrauliques se distinguent par les avantages suivants:

- Capacité de service augmentée → productivité augmentée
- Longevité de la machine → diminution des frais de maintenance
- Diminution du bruit → Plus grande sécurité de travail

Modèle SES

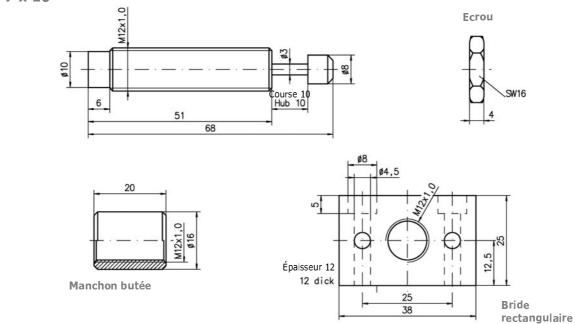
Туре	Course [mm]	Filetage	Absorption d'énergie [Nm/course]	Masse effective [kg]	Page
SES 7 x 6 A	6	M10x1,0	3	4 - 12	7
SES 7 x 6 B	6	M10x1,0	3	1 - 6	7
SES 7 x 6 AA	6	M10x1,0	3	9 - 23	7
SES 7 x 10 A	10	M12x1,0	7	6 - 45	7
SES 7 x 10 B	10	M12x1,0	7	1 - 14	7
SES 7 x 10 AA	10	M12x1,0	7	25 - 70	7
SES 14 S	16	M14x1,0	30	5 - 192	8
SES 14 H	16	M14x1,0	30	140 - 720	8
SES 7 x 15 A	15	M14x1,0 ou M14x1,5	19	8 - 80	9
SES 7 x 15 B	15	M14x1,0 ou M14x1,5	19	1 - 10	9
SES 7 x 15 AA	15	M14x1,0 ou M14x1,5	19	65 - 200	9
SES 10 x 12 A	12	M16x1,5	18	12 - 140	9
SES 10 x 12 B	12	M16x1,5	18	2,5 - 20	9
SES 10 x 12 AA	12	M16x1,5	18	100 - 480	9
SES 10 x 20 A	20	M20x1,5	30	24 - 240	10
SES 10 x 20 B	20	M20x1,5	30	3 - 28	10
SES 10 x 20 AA	20	M20x1,5	30	170 - 900	10
SES 10 x 40 A	40	M20x1,5	60	40 - 500	10
SES 10 x 40 B	40	M20x1,5	60	6 - 60	10
SES 10 x 40 AA	40	M20x1,5	60	300 - 1600	10
SES 11 x 25 A	25	M25x1,5 ou M25x2,0	81	110 - 900	11
SES 11 x 25 B	25	M25x1,5 ou M25x2,0	81	8 - 138	11
SES 11 x 25 AA	25	M25x1,5 ou M25x2,0	81	390 - 2300	11
SES 1.0 M x 40 A	40	M25x1,5	116	175 - 1140	11
SES 1.0 M x 40 B	40	M25x1,5	116	13 - 220	11
SES 1.0 M x 40 AA	40	M25x1,5	116	624 - 2600	11

Ce tableau facilite une première sélection. Voir formules de calcul (pages 32 - 34) pour sélectionner le type d'amortisseur le mieux adapté à vos besoins.

Modèle SES

Туре	Course [mm]	Filetage	Absorption d'énergie [Nm/course]	Masse effective [kg]	Page		
SES 1.15 M x 1 A	25	M33x1,5 ou 1 ¼" – 12UNF	100	25 - 110	12		
SES 1.15 M x 1 B	25	M33x1,5 ou 1 ¼" – 12UNF	100	8 - 33	12		
SES 1.15 M x 1 AA	25	M33x1,5 ou 1 ¼" – 12UNF	100	95 - 440	12		
SES 1.15 M x 2 A	50	M33x1,5 ou 1 ¼" – 12UNF	200	45 - 220	12		
SES 1.15 M x 2 B	50	M33x1,5 ou 1 ¼" – 12UNF	200	15 - 65	12		
SES 1.15 M x 2 AA	50	M33x1,5 ou 1 ¼" – 12UNF	200	190 - 890	12		
SES 1.1 M x 1 A	25	M36x1,5	195	170 - 870	13		
SES 1.1 M x 1 B	25	M36x1,5	195	45 - 250	13		
SES 1.1 M x 1 AA	25	M36x1,5	195	540 - 2700	13		
SES 1.1 M x 2 A	50	M36x1,5	390	340 - 1740	13		
SES 1.1 M x 2 B	50	M36x1,5	390	90 - 500	13		
SES 1.1 M x 2 AA	50	M36x1,5	390	1080 - 5400	13		
SES 1.5 M x 1 A	25	M45x1,5	250	110 - 700	14		
SES 1.5 M x 1 B	25	M45x1,5	250	27 - 130	14		
SES 1.5 M x 1 AA	25	M45x1,5	250	600 - 3000	14		
SES 1.5 M x 2 A	50	M45x1,5	500	220 - 1400	14		
SES 1.5 M x 2 B	50	M45x1,5	500	55 - 260	14		
SES 1.5 M x 2 AA	50	M45x1,5	500	1200 - 6000	14		
SES 1.5 M x 3 A	75	M45x1,5	750	330 - 2100	14		
SES 1.5 M x 3 B	75	M45x1,5	750	82 - 390	14		
SES 1.5 M x 3 AA	75	M45x1,5	750	1800 - 9000	14		
SES 2.0 M x 2 A	50	M64x2,0	1140	430 - 2250	15		
SES 2.0 M x 2 B	50	M64x2,0	1140	130 - 675	15		
SES 2.0 M x 2 AA	50	M64x2,0	1140	1600 - 9000	15		
SES 2.0 M x 2 BB	50	M64x2,0	1140	35 - 165	15		
SES 2.0 M x 4 A	100	M64x2,0	2280	900 - 4900	15		
SES 2.0 M x 4 B	100	M64x2,0	2280	250 - 1300	15		
SES 2.0 M x 4 AA	100	M64x2,0	2280	3500 - 18000	15		
SES 2.0 M x 4 BB	100	M64x2,0	2280	70 - 350	15		
SES 2.0 M x 6 A	150	M64x2,0	3420	1300 - 6500	15		
SES 2.0 M x 6 B	150	M64x2,0	3420	400 - 2000	15		
SES 2.0 M x 6 AA	150	M64x2,0	3420	5300 - 27000	15		
SES 2.0 M x 6 BB	150	M64x2,0	3420	100 - 500	15		

Ce tableau facilite une première sélection. Voir formules de calcul (pages 32 - 34) pour sélectionner le type d'amortisseur le mieux adapté à vos besoins.

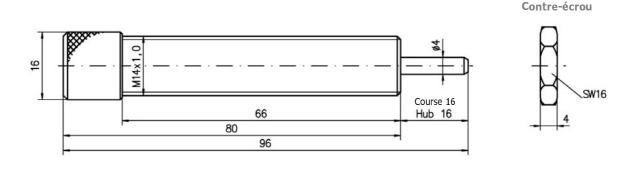

Ecart de températures – 10 °C à + 80 °C (température jusqu'à + 120 °C à la demande).

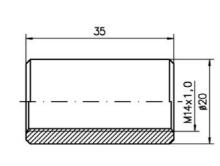
- Position de montage suivant les besoins
- Butoir en polyuréthane inclus
- Prévoir un arrêt mécanique d'environ 1 mm avant fin de course, ne pas venir en position finale à pleine charge.

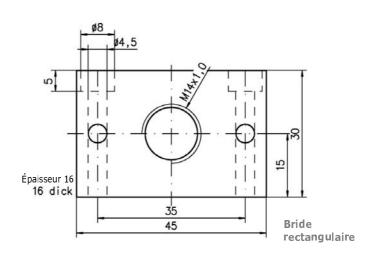
SES 7 x 6

SES 7 x 10

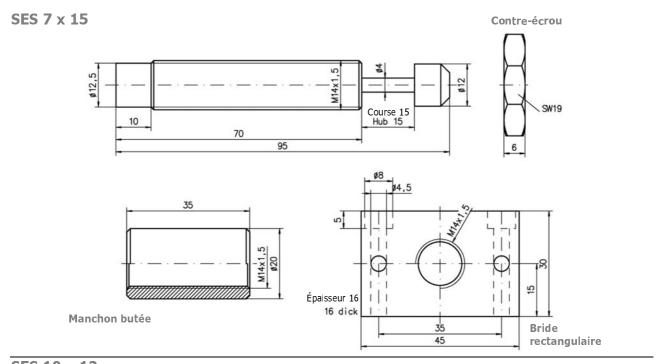
	Туре	Course	Filetage	Absorption d'énergie		Masse effective	Force de rappel	Poids
		[mm]		[Nm/course]	[kNm/h]	[kg]	[N]	[9]
	SES 7 x 6 A	6	M10x1,0	3	10,8	4 - 12	1,5 - 4	19
	SES 7 x 6 B	6	M10×1,0	3	10,8	1 - 6	1,5 - 4	19
	SES 7 x 6 AA	6	M10x1,0	3	10,8	9 - 23	1,5 - 4	19
•	SES 7 x 10 A	10	M12x1,0	7	12	6 - 45	6 - 11	50
	SES 7 x 10 B	10	M12x1,0	7	12	1 - 14	6 - 11	50
	SES 7 x 10 AA	10	M12x1,0	7	12	25 - 70	6 - 11	50

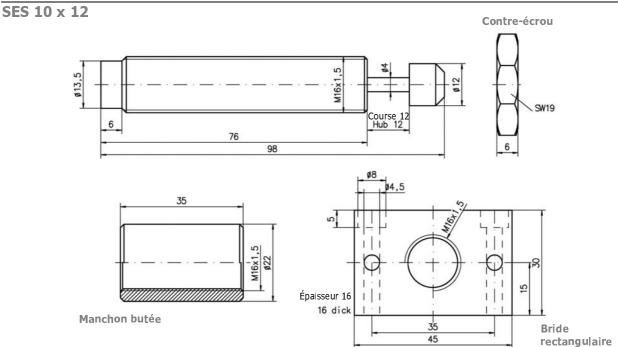



SES 14


Les amortisseurs type SES sont principalement conçus pour les charges lourdes dans le domaine de l'automatisation. Les surfaces de contact sont «superfinies» et traitées, les joints spéciaux et de l'huile spéciale permettent une longévité garantie d'au moins 10.000.000 courses. La caractéristique progressive permet une décélération constante (vitesses d'impact augmentées, par exemple : vérin pneumatique).

- Ecart de températures de 10 °C à + 80 °C
- Position de montage suivant les besoins
- Prévoir un arrêt mécanique d'environ 1 mm avant fin de course, ne pas venir en position finale à pleine charge

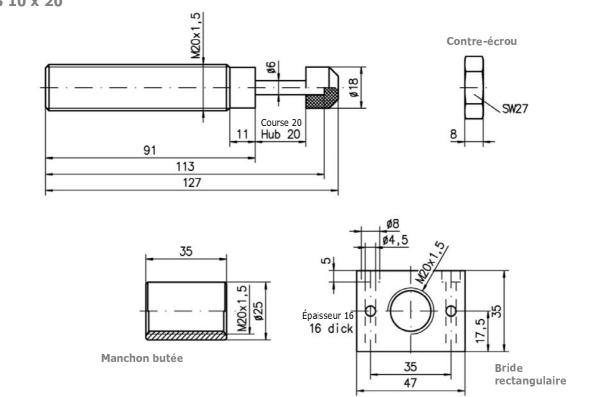

Manchon butée

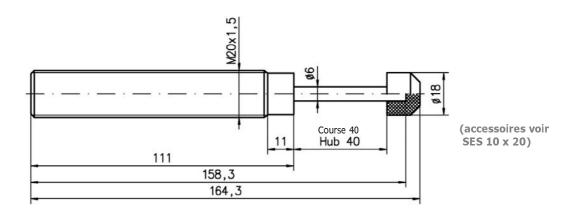


Туре	Course	Filetage	Absorption d'énergie		Masse effective	Force de rappel	Poids
	[mm]		[Nm/course]	[kNm/h]	[kg]	[N]	[g]
SES 14 S	16	M14x1,0	30	45	5 - 192	8 - 19	78
SES 14 H	16	M14x1,0	30	45	140 - 720	8 - 19	78

Ecart de températures de - 10 °C à + 80 °C (température jusquà + 120 °C à demande).

- Position de montage suivant les besoins
- Butoir en polyuréthane inclus
- Prévoir en arrêt mécanique d'environ 1 mm avant fin de course, ne pas venir en position finale à pleine charge.


Туре	Course	Filetage	Absorption d'énergie		Masse effective	Force de rappel	Poids
	[mm]		[Nm/course]	[kNm/h]	[kg]	[N]	[9]
SES 7 x 15 A	15	M14x1,0	19	36	8 - 80	1,5 - 4	65
SES 7 x 15 B	15	ou	19	36	1 - 10	1,5 - 4	65
SES 7 x 15 AA	15	M14x1,5	19	36	65 - 198	1,5 - 4	65
SES 10 x 12 A	12	M16x1,5	18	40	12 - 140	4 - 11	90
SES 10 x 12 B	12	M16x1,5	18	40	2,5 - 20	4 - 11	90
SES 10 x 12 AA	12	M16x1,5	18	40	100 - 480	4 - 11	90

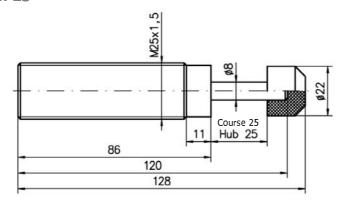

Ecart de températures de - 10 °C à + 80 °C (température jusqu'à + 120 °C à demande).

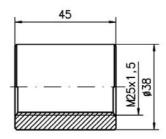
- Position de montage suivant les besoins
- Butoir en polyuréthane disponible en option
- Prévoir un arrêt mécanique d'environ 1mm avant fin de course, ne pas venir en position finale à pleine

SES 10 x 20

SES 10 x 40

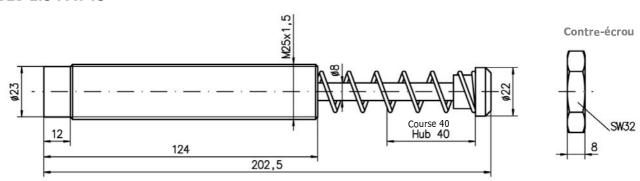
Туре	Course	Filetage	Absorption d'énergie		Masse effective	Force de rappel	Poids
	[mm]		[Nm/course]	[kNm/h]	[kg]	[N]	[9]
SES 10 x 20 A	20	M20x1,5	30	46	24 - 240	7 - 20	170
SES 10 x 20 B	20	M20x1,5	30	46	3 - 28	7 - 20	170
SES 10 x 20 AA	20	M20x1,5	30	46	176 - 960	7 - 20	170
SES 10 x 40 A	40	M20x1,5	60	56	40 - 500	10 - 25	210
SES 10 x 40 B	40	M20x1,5	60	56	6 - 60	10 - 25	210
SES 10 x 40 AA	40	M20x1,5	60	56	300 - 1600	10 - 25	210

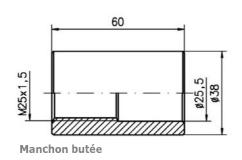


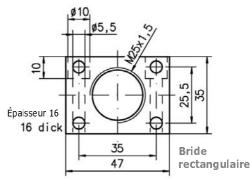

Ecart de températures de-10 °C à +80 °C (Température jusquà + 120 °C à demande)

- Position de montage suivant les besoins
- Butoir en polyuréthane disponible pour SES 11 x 25)
- Prévoir en arrêt mécanique d'environ 1 mm avant fin de course, ne pas venir en position finale à pleine charge.

SES 11 x 25

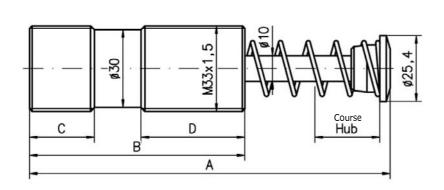


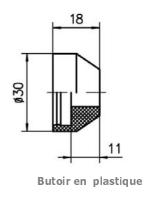



Manchon butée

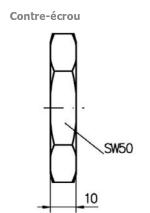
(accessoires voir SES 1.0 M x 40)

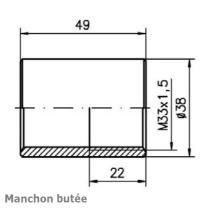
SES 1.0 M x 40

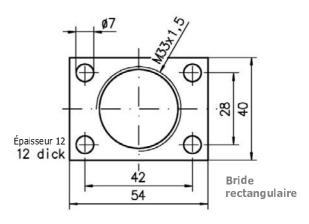

Туре	Course	Filetage	Absorption (l'énergie	Masse effective	Force de rappel	Poids
	[mm]		[Nm/course]	[kNm/h]	[kg]	[N]	[g]
SES 11 x 25 A	25	M25x1,5	81	72	110 - 900	13 - 26	240
SES 11 x 25 B	25	oder	81	72	8 - 138	13 - 26	240
SES 11 x 25 AA	25	M25x2,0	81	72	390 - 2300	13 - 26	240
SES 1.0 M x 40 A	40	M25x1,5	116	106	176 - 1140	20 - 70	360
SES 1.0 M x 40 B	40	M25x1,5	116	106	13 - 220	20 - 70	360
SES 1.0 M x 40 AA	40	M25x1,5	116	106	624 - 2600	20 - 70	360



- Ecart de températures de 10 °C à + 80 °C (température jusqu'à + 120 °C à demande).
- Position de montage suivant les besoins
- Butoir en polyuréthane disponible
- Prévoir un arrêt mécanique d'environ 1 mm avant fin de course, ne pas venir en position finale à pleine charge.

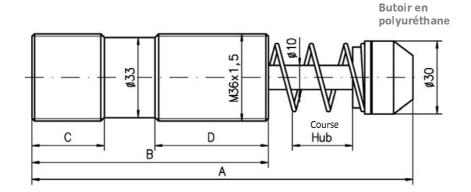

SES 1.15 M

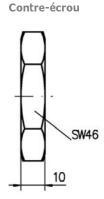




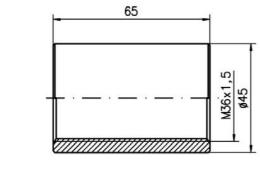
Dimensions:

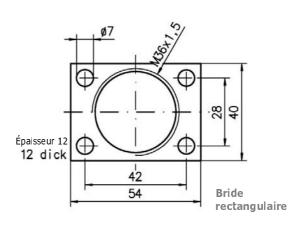
Туре	Course	A	B [mm]	С	D
SES 1.15 M x 1	25	139	83	25	40
SES 1.15 M x 2	50	189	108	30	60




Туре	Course	Filetage	Absorption (Absorption d'énergie		Force de rappel	Poids
	[mm]		[Nm/course]	[kNm/h]	[kg]	[N]	[9]
SES 1.15 M x 1 A	25	M33x1,5	100	76	25 - 110	40 - 70	410
SES 1.15 M x 1 B	25	ou	100	76	3 - 28	40 - 70	410
SES 1.15 M x 1 AA	25	1 ¼" – 12 UNF	100	76	176 - 960	40 - 70	410
SES 1.15 M x 2 A	50	M33x1,5	200	86	45 - 220	45 - 80	520
SES 1.15 M x 2 B	50	ou	200	86	15 - 65	45 - 80	520
SES 1.15 M x 2 AA	50	1 ¼" – 12 UNF	200	86	190 - 890	45 - 80	520

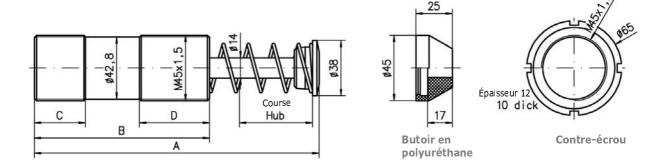
- Ecart de température de 10 °C à + 80 °C (température jusquà + 120 °C à demande)
- Position de montage suivant les besoins
- Butoir en polyuréthane inclus
- Prévoir en arrêt mécanique d'environ 1 mm avant fin de course, ne pas venir en position finale à pleine charge.


SES 1.1 M

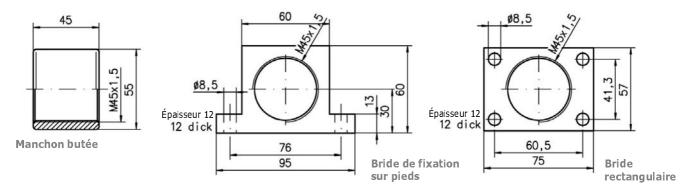


Dimensions:

Туре	Course	A	B [mm]	С	D
SES 1.1 M x 1	25	158	98	30	47
SES 1.1 M x 2	50	195	106	30	55



Туре	Course	Filetage	Absorption (d'énergie	Masse effective	Force de rappel	Poids
	[mm]		[Nm/course]	[kNm/h]	[kg]	[N]	[9]
SES 1.1 M x 1 A	25	M36x1,5	195	94	170 - 870	35 - 80	500
SES 1.1 M x 1 B	25	M36x1,5	195	94	45 - 250	35 - 80	500
SES 1.1 M x 1 AA	25	M36x1,5	195	94	540 - 2700	35 - 80	500
SES 1.1 M x 2 A	50	M36x1,5	390	188	340 - 1740	35 – 85	650
SES 1.1 M x 2 B	50	M36x1,5	390	188	90 - 500	35 – 85	650
SES 1.1 M x 2 AA	50	M36x1,5	390	188	1080 - 5400	35 - 85	650

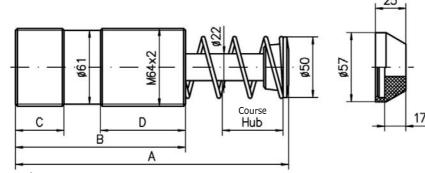

- Ecart de température 10 °C à + 80 °C (température jusqu'à 120° C à demande)
- Position de montage suivant les besoins
- Butoir en polyuréthane est disponible en option
- Ces amortisseurs de chocs sont munis d'un arrêt interne – un arrêt externe n'est pas nécessaire.

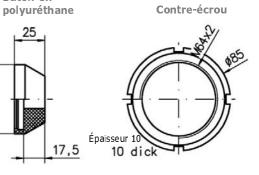
SES 1.5 M

Dimensions:

Туре	Course	A	B [mm]	С	D
SES 1.5 M x 1	25	145	95	25	43
SES 1.5 M x 2	50	195	120	35	48
SES 1.5 M x 3	75	245	145	35	73

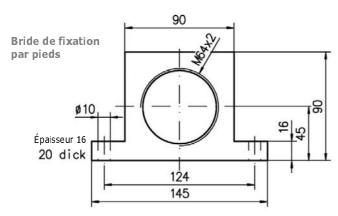
Туре	Course	Filetage	Absorption d'énergie		Masse effective	Force de rappel	Poids
	[mm]		[Nm/course]	[kNm/h]	[kg]	[N]	[kg]
SES 1.5 M x 1 A	25	M45x1,5	250	137	110 - 700	60 - 90	1,2
SES 1.5 M x 1 B	25	M45x1,5	250	137	27 - 130	60 - 90	1,2
SES 1.5 M x 1 AA	25	M45x1,5	250	137	600 - 3000	60 - 90	1,2
SES 1.5 M x 2 A	50	M45x1,5	500	149	220 - 1400	70 – 150	1,4
SES 1.5 M x 2 B	50	M45x1,5	500	149	55 - 260	70 – 150	1,4
SES 1.5 M x 2 AA	50	M45x1,5	500	149	1200 - 6000	70 – 150	1,4
SES 1.5 M x 3 A	75	M45x1,5	750	168	330 - 2100	40 - 150	1,6
SES 1.5 M x 3 B	75	M45x1,5	750	168	82 - 390	40 - 150	1,6
SES 1.5 M x 3 AA	75	M45x1,5	750	168	1800 - 9000	40 - 150	1,6

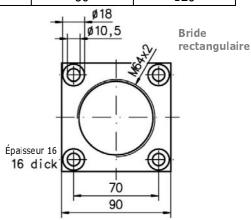



- Ecart de température de 10 °C à + 80 °C (température jusqu'à + 120 °C à demande
- Position de montage suivant les besoins

Butoir en

- Butoir en polyuréthane disponible en option
- Prévoir un arrêt mécanique d'environ 1 mm avant fin de course, ne pas venir en position finale à pleine charge.


SES 2.0 M



Dimensions:

Туре	Course	A	B [mm]	С	D
SES 2.0 M x 2	50	225	140	40	70
SES 2.0 M x 4	100	327	190	50	100
SES 2.0 M x 6	150	455	240	50	120

Туре	Course	Filetage	Absorption d'énergie		Masse effective	Force de rappel	Poids
	[mm]		[Nm/course]	[kNm/h]	[kg]	[N]	[kg]
SES 2.0 M x 2 A	50	M64x2,0	1140	165	430 - 2250	60 - 130	2,9
SES 2.0 M x 2 B	50	M64x2,0	1140	165	130 - 675	60 - 130	2,9
SES 2.0 M x 2 AA	50	M64x2,0	1140	165	1600 - 9000	60 - 130	2,9
SES 2.0 M x 2 BB	50	M64x2,0	1140	165	35 - 165	60 - 130	2,9
SES 2.0 M x 4 A	100	M64x2,0	2280	228	900 - 4900	60 - 180	3,8
SES 2.0 M x 4 B	100	M64x2,0	2280	228	250 - 1300	60 - 180	3,8
SES 2.0 M x 4 AA	100	M64x2,0	2280	228	3500 - 18000	60 - 180	3,8
SES 2.0 M x 4 BB	100	M64x2,0	2280	228	70 - 350	60 - 180	3,8
SES 2.0 M x 6 A	150	M64x2,0	3420	255	1300 - 6500	60 - 270	5,1
SES 2.0 M x 6 B	150	M64x2,0	3420	255	400 - 2000	60 - 270	5,1
SES 2.0 M x 6 AA	150	M64x2,0	3420	255	5300 - 27000	60 - 270	5,1
SES 2.0 M x 6 BB	150	M64x2,0	3420	255	100 - 500	60 - 270	5,1

STD KIME


Fonctionnement d'un amortisseur de chocs réglable

Pendant la course de travail, la tige rentre et l'huile est refoulée dans les orifices d'étranglement. Plus la tige rentre, plus les orifices d'étranglement sont obturés. De ce fait, les régulateurs garantissent une vitesse réglable à volonté et le contrôle régulier de la décélération, permet de réduire considérablement les sollicitations de la machine.

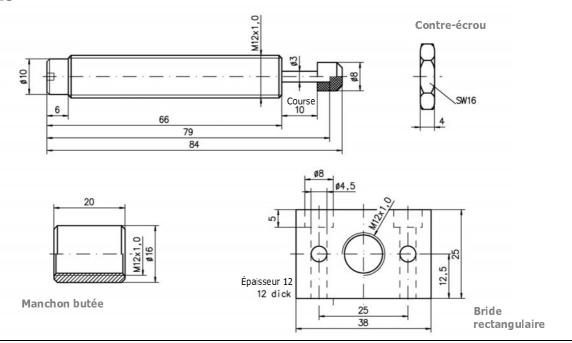
Pour ajuster l'amortisseur correctement aux charges différentes, le diamètre des orifices d'étranglement est réglable par une vis de réglage. La vis de réglage permet le décalage entre le tube d'amortissement et le tube du cylindre. Ce décalage modifié de la section des orifices permet ainsi un réglage continu de l'amortissement.

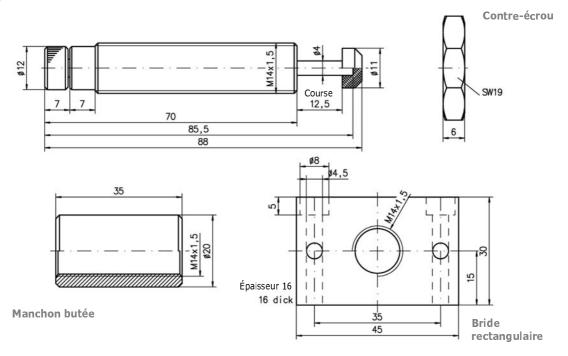
Tous les orifices d'étranglement sont calibrés – ce système permet un amortissement constant et une absorption d'énergie effective sur toute la course.

Un clapet anti-retour permet le retour rapide du piston et l'amortisseur est opérationnel instantanément après une course de travail.

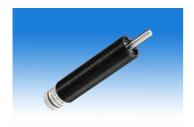
Vue d'ensemble de la gamme STD

Туре	Course	Filetage	Absorption d'énergie	Masse effective	Page
Туре	[mm]	i netage	[Nm/course]	[kg]	rage
STD 7 x 10	10	M12x1,0	4	5 - 60	18
STD 7 x 12	12	M14x1,5	16	1 - 100	18
STD 10 x 12	12	M16x1,5	18	1,5 - 160	19
STD 10 x 20	20	M20x1,5	30	2,5 - 240	19
STD 1.0 M	25	M25x1,5 ou M27x3,0	78	8 - 1360	20
STD 1.0 M x 40	40	M25x1,5	116	13 - 1980	20
STD 1.25 M x 1	25	M33x1,5 ou 1 ¼" – 12UNF	112	10 - 1800	21
STD 1.25 M x 1 NG	25	M33x1,5 ou 1 ¼" – 12UNF	112	330 - 48000	21
STD 1.25 M x 2	50	M33x1,5 ou 1 ¼" – 12UNF	224	15 - 2400	21
STD 1.25 M x 2 NG	50	M33x1,5 ou 1 ¼" – 12UNF	224	470 - 77000	21
STD 1.2 M x 1	25	M36x1,5	195	10 - 1250	22
STD 1.2 M x 1 NG	25	M36x1,5	195	350 - 51000	22
STD 1.2 M x 2	50	M36x1,5	390	15 - 1850	22
STD 1.2 M x 2 NG	50	M36x1,5	390	450 - 81000	22
STD 1.5 M x 1	25	M42x1,5	250	27 - 3600	23
STD 1.5 M x 1 NG	25	M42x1,5	250	3000 - 110000	23
STD 1.5 M x 2	50	M42x1,5	500	43 - 6350	23
STD 1.5 M x 2 NG	50	M42x1,5	500	5000 - 175000	23
STD 1.5 M x 3	75	M42x1,5	750	55 - 9500	23
STD 2.0 M x 1	25	M64x2,0	570	40 - 7500	24
STD 2.0 M x 1 NG	25	M64x2,0	570	10000 - 250000	24
STD 2.0 M x 2	50	M64x2,0	1140	70 - 12000	24
STD 2.0 M x 2 NG	50	M64x2,0	1140	11000 - 460000	24
STD 2.0 M x 4	100	M64x2,0	2280	115 - 12000	24
STD 2.0 M x 4 NG	100	M64x2,0	2280	12000 - 460000	24
STD 2.0 M x 6	150	M64x2,0	3420	130 - 23000	24
STD 3.0 M x 2	50	M85x2,0	2100	190 - 31000	25
STD 3.0 M x 3,5	90	M85x2,0	3600	220 - 35000	25
STD 3.0 M x 5	125	M85x2,0	5100	230 - 40000	25
STD 3.0 M x 6,5	165	M85x2,0	6500	310 - 43000	25
STD 3.0 M x 8	200	M85x2,0	10000	330 - 48000	25
STD 4.0 M x 2	50	M115x2,0	4500	200 - 70000	26
STD 4.0 M x 4	100	M115x2,0	9000	220 - 75000	26
STD 4.0 M x 6	150	M115x2,0	13500	240 - 84000	26
STD 4.0 M x 8	200	M115x2,0	19000	270 - 90000	26
STD 4.0 M x 10	250	M115x2,0	23500	300 - 110000	26

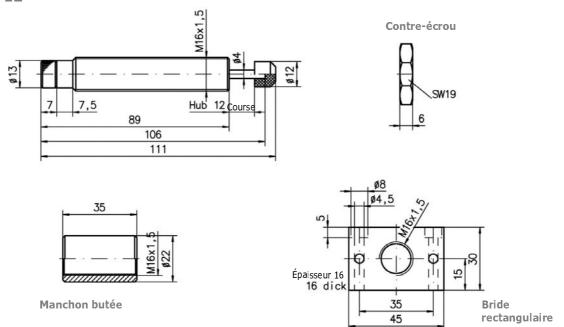

Ce tableau facilite une première sélection. Voir formules de calcul (pages 32 - 34) pour sélectionner le type d'amortisseur le mieux adapté à vos besoins.



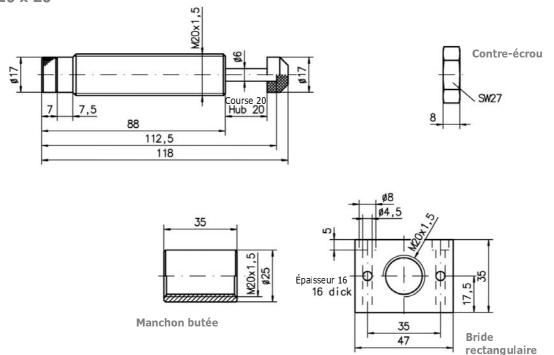
- Réglage continu
- Ecart de températures de 10 °C à + 80 °C (température allant jusqu'à + 120 °C à demande)
- Position de montage suivant les besoins
- Butoir en matière plastique disponible en option
- Prévoir un arrêt mécanique d'environ 1 mm avant fin de course, ne pas venir en position finale à pleine charge


STD 7 x 10

STD 7 x 12



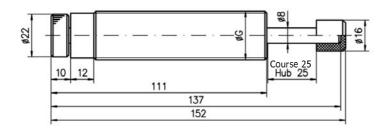
Туре	Course	Filetage	Absorption d'énergie		Masse effective	Force de rappel	Poids
	[mm]		[Nm/course]	[kNm/h]	[kg]	[N]	[g]
STD 7 x 10	10	M12x1,0	4	6	5 - 60	6 - 11	50
STD 7 x 12	12,5	M14x1,5	16	25	1 - 100	5 - 15	70

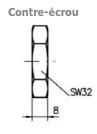


- Réglage continu
- Ecart de températures de 10 °C à + 80 °C (température allant jusqu'à + 120 °C à demande).
- Position de montage suivant les besoins
- Butoir en matière plastique disponible en option
- Prévoir un arrêt mécanique d'environ 1 mm avant fin de course, ne pas venir en position finale à pleine charge

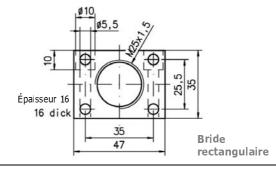
STD 10 x 12

STD 10 x 20

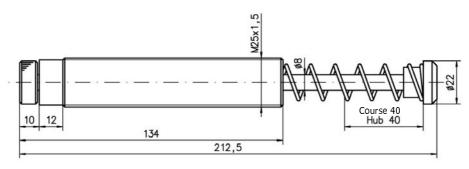

Туре	Course Filetage		Absorption (d'énergie	Masse effective	Force de rappel	Poids	
	[mm]		[Nm/course]	[kNm/h]	[kg]	[N]	[g]	
STD 10 x 12	12	M16x1,5	18	26	1,5 - 160	4 - 11	90	
STD 10 x 20	20	M20x1,5	30	46	2,5 - 240	7 - 20	130	

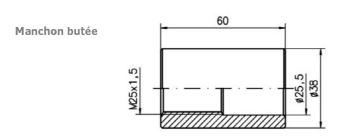




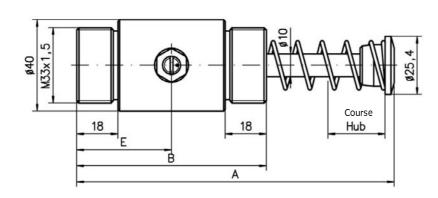

STD 1.0 M

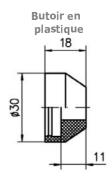
- Réglage continu
- Ecart de températures de 10 °C à + 80 °C (température allant jusqu'à + 120 °C à demande)
- Position de montage suivant les besoins
- Butoir en matière plastique pour STD 1.0 M disponible en option
- Prévoir un arrêt mécanique d'environ 1 mm avant fin de course, ne pas venir en position finale à pleine charge





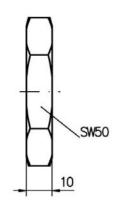
STD 1.0 x 40

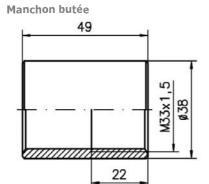

(accessoires voir STD 1.0 M)

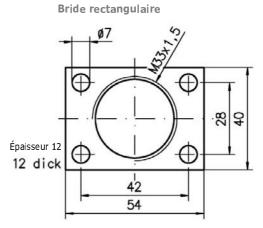

Туре	Course	Option	Filetage	Absorption d'énergie		Masse effective	Force de rappel	Poids
	[mm]			[Nm/course]	[kNm/h]	[kg]	[N]	[9]
STD 1.0 M	25		M27x3,0	78	66	8 - 1360	25 - 50	390
STD 1.0 MB	25	Butoir	M27x3,0	78	66	8 - 1360	25 - 50	310
STD 1.0 M-S	25		M25x1,5	78	66	8 - 1360	25 - 50	400
STD 1.0 MB-S	25	Butoir	M25x1,5	78	66	8 - 1360	25 - 50	320
STD 1.0 M x 40	40		M25x1,5	116	106	13 - 1980	20 - 70	390

- Réglage continu
- Ecart de températures de 10 °C à + 80 °C (température allant jusqu'à 120° C à demande)
- Position de montage suivant les besoins
- Butoir en matière plastique disponible en option
- Prévoir un arrêt mécanique d'environ 1 mm avant fin de course, ne pas venir en position finale à pleine charge

STD 1.25 M

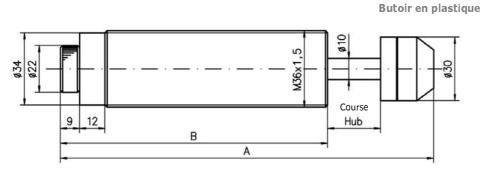




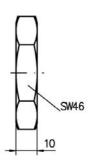

Dimensions:

Туре	Course	A [m	B m]	E
STD 1.25 M x 1	25	139	83	41,5
STD 1.25 M x 2	50	189	108	66,5

Contre-écrou

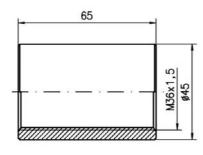

Туре	Course	Filetage	Absorption d'énergie		Masse effective	Force de rappel	Poids
	[mm]		[Nm/course]	[kNm/h]	[kg]	[N]	[9]
STD 1.25 M x 1	25	M33x1,5 ou	112	76	10 - 1800	40 - 70	640
STD 1.25 M x 1 NG	25	1 ¼" – 12 UNF	112	76	330 - 48000	40 - 70	640
STD 1.25 M x 2	50	M33x1,5 ou	224	86	15 - 2400	45 - 80	730
STD 1.25 M x 2 NG	50	1 ¼" – 12 UNF	224	86	470 - 77000	45 - 80	730

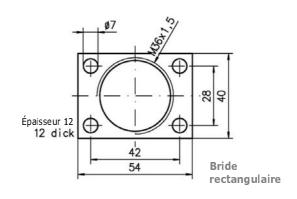
STD KIME



- Réglage continu
- Ecart de températures de 10 °C à + 80 °C (température allant jusqu'à + 120 °C à demande).
- Position de montage suivant les besoins
- Butoir en matière plastique
- Prévoir un arrêt mécanique d'environ 1 mm avant fin de course, ne pas venir en position finale à pleine charge

STD 1.2 M

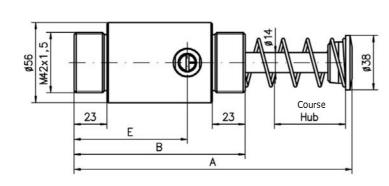


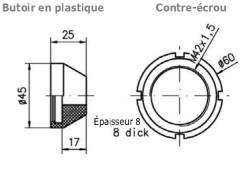


Dimensions:

Туре	Course	A [mm]	В		
STD 1.2 M x 1	25	176	126		
STD 1.2 M x 2	50	248	172		

Manchon butée



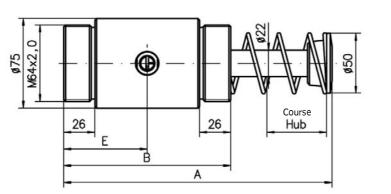

Donnees techniques:							
Туре	Course	Filetage	Absorption d'énergie		Masse effective	Force de rappel	Poids
	[mm]		[Nm/course]	[kNm/h]	[kg]	[N]	[g]
STD 1.2 M x 1	25	M36x1,5	195	94	10 - 1250	35 - 80	650
STD 1.2 M x 1 NG	25	M36x1,5	195	94	350 - 51000	35 - 80	650
STD 1.2 M x 2	50	M36x1,5	390	188	15 - 1850	35 - 85	820
STD 1.2 M x 2 NG	50	M36x1,5	390	188	450 - 81000	35 - 85	820

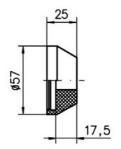
- Réglage continu
- Ecart de températutures de 10° C à + 80 °C (température allant jusqu'à + 120 °C à demande)
- Position de montage suivant les besoins
- Butoir en matière plastique disponible en option
- Prévoir un arrêt mécanique d'environ 1 mm avant fin de course, ne pas venir en position finale à pleine charge

STD 1.5 M

Dimensions:

Туре	Course	E		
STD 1.5 M x 1	25	144	m] 94	53
STD 1.5 M x 2	50	195	120	79,5
STD 1.5 M x 3	75	246	145	104,5


Туре	Course	Filetage	Absorption o	d'énergie	Masse effective	Force de rappel	Poids
	[mm]		[Nm/course]	[kNm/h]	[kg]	[N]	[kg]
STD 1.5 M x 1	25	M45x1,5	250	125	27 - 3600	60 - 90	1,4
STD 1.5 M x 1 NG	25	M45x1,5	250	125	3000 - 110000	60 - 90	1,4
STD 1.5 M x 2	50	M45x1,5	500	148	43 - 6350	70 - 150	1,7
STD 1.5 M x 2 NG	50	M45x1,5	500	148	5000 - 175000	70 - 150	1,7
STD 1.5 M x 3	75	M45x1,5	750	182	55 - 9500	60 - 130	2,1


STD KIME

- Réglage continu
- Ecart de températures de 10 °C à + 80 °C (température allant jusqu'à + 120 °C à demande).
- Position de montage suivant les besoins
- Butoir en matière plastique disponible en option
- Prévoir un arrêt mécanique d'environ 1 mm avant fin de course, ne pas venir en position finale à pleine charge.

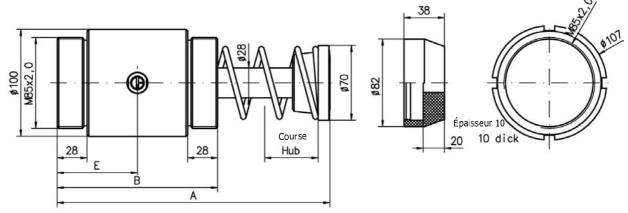

STD 2.0 M

Butoir en plastique

billiensions.											
Туре	Course	A [m	E								
STD 2.0 M x 1	25	175	115	57,5							
STD 2.0 M x 2	50	225	140	70							
STD 2.0 M x 4	100	327	190	95							
STD 2.0 M x 6	150	455	240	120							

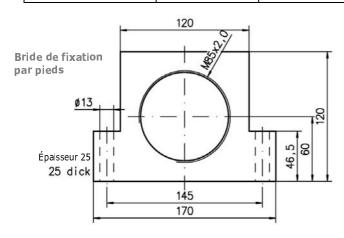
Données techniques

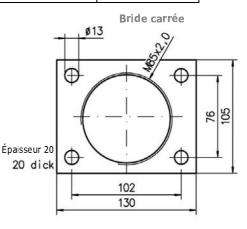
Туре	Course	Filetage	Absorption	n d'énergie	Masse effective	Force de rappel	Poids
	[mm]		[Nm/course]	[kNm/h]	[kg]	[N]	[kg]
STD 2.0 M x 1	25	M64x2,0	570	150	55 - 8000	60 - 90	3,2
STD 2.0 M x 1 NG	25	M64x2,0	570	150	10000 - 250000	60 - 90	3,2
STD 2.0 M x 2	50	M64x2,0	1140	171	70 - 12000	60 - 130	3,6
STD 2.0 M x 2 NG	50	M64x2,0	1140	171	11000 - 460000	60 - 130	3,6
STD 2.0 M x 4	100	M64x2,0	2280	228	115 - 17000	60 - 180	4,8
STD 2.0 M x 4 NG	100	M64x2,0	2280	228	12000 - 460000	60 - 180	4,8
STD 2.0 M x 6	150	M64x2,0	3420	287	130 - 23000	55 - 270	6,0


- Réglage continu
- Ecart de températures de 10 °C à + 80 °C (température allant jusqu'à + 120 °C à demande)
- Position de montage suivant les besoins
- Butoir en matière plastique disponible en option

Butoir en plastique

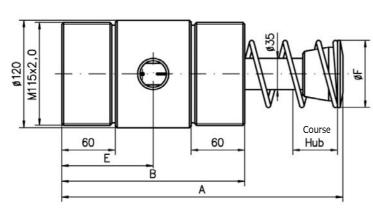
Prévoir un arrêt mécanique d'environ 1 mm avant fin de course, ne pas venir en position finale à pleine charge

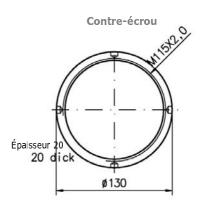

Contre-écrou


STD 3.0 M

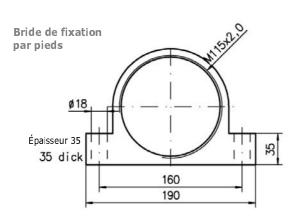
Dimensions:

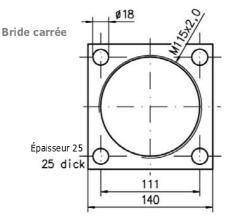
Difficusions.										
Туре	Course	A [m	B m]	E						
STD 3.0 M x 2	50	255	150	75						
STD 3.0 M x 3.5	90	335	190	95						
STD 3.0 M x 5	125	410	225	112						
STD 3.0 M x 6.5	165	505	265	132						
STD 3.0 M x 8	200	600	300	150						




Туре	Course	Filetage	Absorption d'énergie		Masse effective	Force de rappel	Poids
	[mm]		[Nm/course]	[kNm/h]	[kg]	[N]	[kg]
STD 3.0 M x 2	50	M85x2,0	2100	720	190 - 31000	140 - 265	3,2
STD 3.0 M x 3.5	90	M85x2,0	3600	1030	220 - 35000	110 - 200	3,2
STD 3.0 M x 5	125	M85x2,0	5100	1250	228 - 40000	105 - 290	4,8
STD 3.0 M x 6.5	165	M85x2,0	6500	1550	310 - 43000	120 - 350	4,8
STD 3.0 M x 8	200	M85x2,0	10000	2100	330 - 48000	170 - 580	6,0

- Réglage continu
- Ecart de températures de 10 °C à + 80 °C (température allant jusqu'à + 120 °C à demande)
- Position de montage suivant les besoins
- Prévoir un arrêt mécanique d'environ 2 mm avant fin de course, ne pas venir en position finale à pleine charge

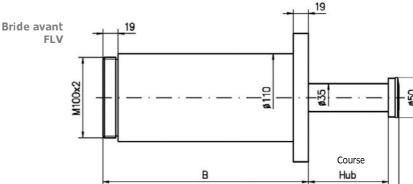

STD 4.0 M

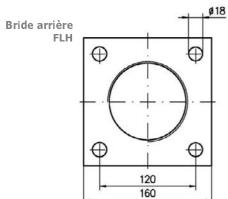


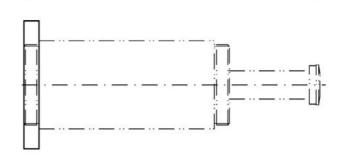
Dimensions:

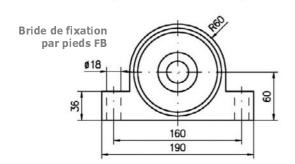
Туре	Course	A	B [mm]	E	ØF
STD 4.0 M x 2	50	315	205	102	75
STD 4.0 M x 4	100	415	255	127	75
STD 4.0 M x 6	150	516	305	152	90
STD 4.0 M x 8	200	642	355	177	90
STD 4.0 M x 10	250	745	405	202	110

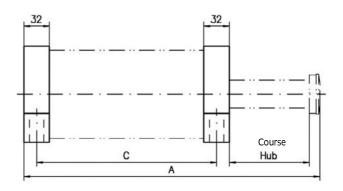
Туре	Course [mm]	Filetage	Absorption d'énergie		Masse effective [kg]	Force de rappel	Poids [kg]
			[Nm/course]	[kNm/h]		[N]	
STD 4.0 M x 2	50	M115x2,0	4500	1000	200 - 70000	200 - 290	14
STD 4.0 M x 4	100	M115x2,0	9000	1250	220 - 75000	170 - 290	16
STD 4.0 M x 6	150	M115x2,0	13500	1450	240 - 84000	170 - 390	18
STD 4.0 M x 8	200	M115x2,0	19000	1700	270 - 90000	240 - 600	21
STD 4.0 M x 10	250	M115x2,0	23500	2000	300 - 110000	170 - 460	25


SDN


SDN 45

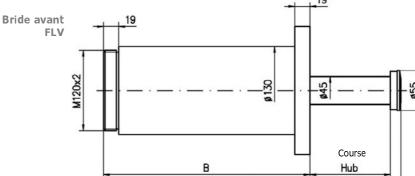

Les amortisseurs de sécurité type SDN sont une bonne • alternative aux amortisseurs de chocs industriels. Ces • amortisseurs sont conçus pour une utilisation comme « arrêt d'urgence » suivant les besoins. Domaines d'application: ponts roulants, manutention, matériels lourds, etc.

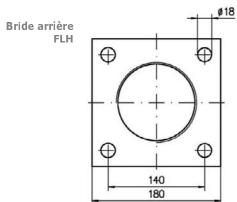

- Vitesse d'impact 0,9 4,5 m/s
- Force de freinage max.: 80 kN (absorption d'énergie maximale)
- Force de rappel: 400 500 N
- Ecart de températures: 10 °C à + 80 °C

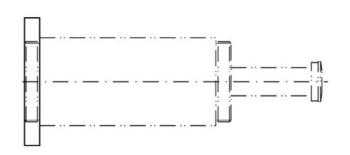


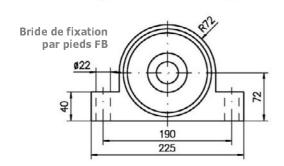
Données techniques:

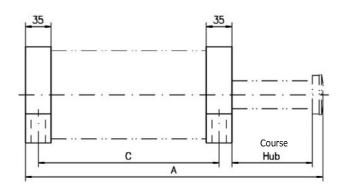
Dimensions: Donnees techniques:										
Туре	Course	A	В	С	Absorption d'énergie	Déviation angulaire tolérée		Poids		
		[m	m]		Max. [kNm/course]	FLV + FB [°]	FLH [°]	[kg]		
SDN 45-50	50	270	207	175	3,6	5	4	13		
SDN 45-100	100	370	257	225	7,2	5	4	15		
SDN 45-150	150	470	307	275	10,8	5	4	17		
SDN 45-200	200	570	357	325	14,4	5	4	19		
SDN 45-250	250	670	407	375	18,0	4,5	3,5	21		
SDN 45-300	300	785	472	440	21,6	4	3	23		
SDN 45-350	350	885	522	490	25,2	3,5	2,5	25		
SDN 45-400	400	1000	587	555	28,8	3	2	27		
SDN 45-500	500	1215	702	670	36,0	2,5	1,5	31		
SDN 45-600	600	1430	817	785	43,2	2	1	35		
SDN 45-700	700	1645	932	900	50,4	1,5	0,5	39		


SDN


SDN 60

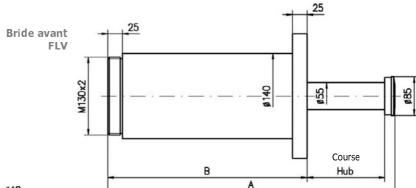

Les amortisseurs de sécurité type SDN sont une bonne • alternative aux amortisseurs de chocs industriels. Ces amortisseurs sont conçus pour une utilisation comme «arrêt d'urgence» suivant les besoins. Domaines d'application: ponts roulants, manutention, matériels lourds, etc.

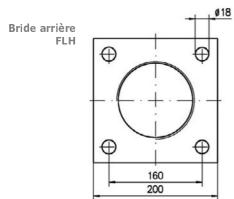

- Vitesse d'impact 0,5 4,5 m/s
- Force de freinage max.: 160 kN (absorption d'énergie maximale)
- Force de rappel: 600 800 N
- Ecart de températures: 10 °C à + 80 °C

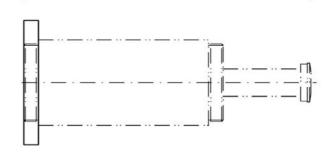


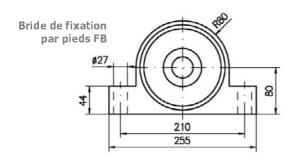
Données techniques:

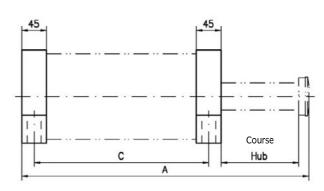
Dimensions; Données techniques;										
Туре	Course	A	В	С	Absorption d'énergie	Déviation angulaire tolérée		Poids		
		[m	m]		Max. [kNm/course]	FLV + FB [°]	FLH [°]	[kg]		
SDN 60-100	100	390	270	235	14	5	4	23		
SDN 60-150	150	490	320	285	21	5	4	26		
SDN 60-200	200	590	370	335	28	5	4	28		
SDN 60-250	250	690	420	385	35	4,5	3,5	31		
SDN 60-300	300	805	485	450	42	4	3	34		
SDN 60-350	350	905	535	500	49	3,5	2,5	37		
SDN 60-400	400	1020	600	565	56	3	2	40		
SDN 60-500	500	1235	715	680	70	2,5	1,5	45		
SDN 60-600	600	1450	830	795	84	2	1	51		
SDN 60-700	700	1665	945	910	98	1,5	0,5	57		
SDN 60-800	800	1880	1060	1025	112	1	0	63		


SDN


SDN 75


Les amortisseurs de sécurité type SDN sont une bonne • alternative aux amortisseurs de chocs industriels. Ces • amortisseurs sont conçus pour une utilisation comme «arrêt d'urgence» suivant les besoins. Domaines d'application: ponts roulants, manutention, matériels lourds, etc.


- Vitesse d'impact: 0,5 4,5 m/s
- Force de freinage max.: 210 kN (absorption d'énergie maximale)
 - Force de rappel: 1000 1300 N
- Ecart de températures: 10 °C à + 80 °C



Données techniques:

Difficitions:	Doilliees techniques:								
Туре	Course	A	В	С	Absorption d'énergie	Déviation angulaire tolérée		Poids	
		[m	m]		Max. [kNm/course]	FLV + FB [°]	FLH [°]	[kg]	
SDN 75-100	100	405	285	240	18	5	4	23	
SDN 75-150	150	505	335	290	27	5	4	26	
SDN 75-200	200	605	385	340	36	5	4	28	
SDN 75-250	250	705	435	390	45	4,5	3,5	31	
SDN 75-300	300	805	485	440	54	4	3	34	
SDN 75-350	350	925	555	510	63	3,5	2,5	37	
SDN 75-400	400	1025	605	560	72	3	2	40	
SDN 75-500	500	1245	725	680	90	2,5	1,5	45	
SDN 75-600	600	1445	825	780	108	2	1	51	
SDN 75-700	700	1665	945	900	126	1,5	0,5	57	
SDN 75-800	800	1865	1045	1000	144	1	0	63	
SDN 75-1000	1000	2285	1265	1220	180	1,5	0,5	57	
SDN 75-1200	1200	2705	1485	1440	216	1	0	63	

HBV

Fonctionnement

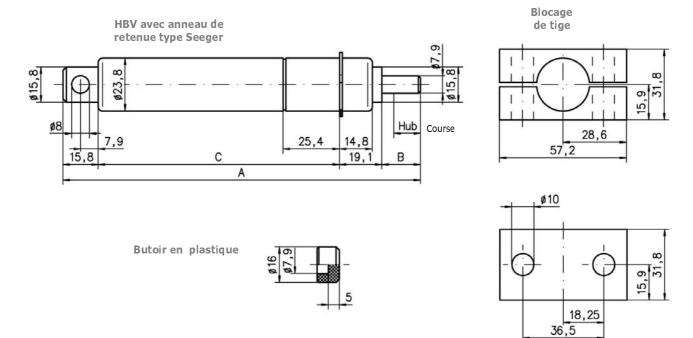
Description Les freins de réglage hydrauliques type HBV s'emploient lorsqu'on désire une vitesse constante et un réglage précis. Les régulateurs garantissent une force de freinage constante sur toute la course. Le réglage micrométrique continu permet une adaptation universelle aux divers besoins des utilisateurs.

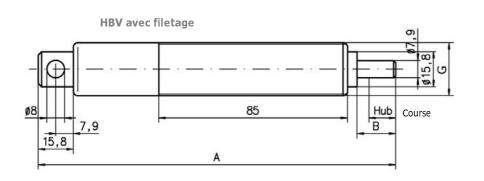
Sans fuite Les freins de réglage type HBV possèdent une double membrane sans aucune fuite. Ils répondent donc aux critères les plus exigeants de l'industrie alimentaire, des appareils médicaux ainsi que des robots.

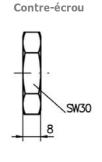
Sans effet Slipstick Grâce á la construction spéciale, il n'y a pas un effet "slipstick" en cas de vitesse et force de freinage diminuée.

Resistance thermique L'utilisation de l'huile silicone (résistance en température permet une fonction de manière continu sur toute la course, également en cas d'échauffement.

Durabilité La construction de nos freins de réglage permet de réduire considérablement l'usure – ils sont exempts de frottements. De façon à permettre une précision particulière et une fonction constante, les guidages sont traités et polis extrafin. Les régulateurs possèdent une membrane à déroulement permettant une grande stabilité. Les freins de réglage HBV sont munis d'un filtre permettant le nettoyage de l'huile silicone après chaque course et une meilleure résistance à l'usure.


Fiabilité Afin de les rendre plus fiables, tous nos freins hydrauliques de type HBV subissent un contrôle final et un test de 48 h sous différentes charges...


Course	Force nécessaire pour une vitesse de 25 mm/s avec réglage max.	Force nécessaire pour une vitesse de 100 mm/s avec réglage max.	Durée de pleine course avec charge de 500 kg et réglage min.	Durée de pleine course avec charge de 50 kg et réglage min.	Force de rappel	Temps de rappel
[mm]	[N]	[N]	[s]	[s]	[N]	[s]
12	50	150	8	150	18	0,03
25	50	150	15	300	18	0,06
50	50	150	30	600	18	0,10
75	50	150	45	900	18	0,23


HBV

- Ecart de températures de + 5 °C à + 60 °C.
- Position de montage suivant les besoins
- Prévoir un arrêt mécanique d'environ 1 mm avant fin de course
- Attention au «flambage de la tige» en cas de «flambage» la membrane roulante peut être endommagée.
- Filetage extérieur ou rainures type Seeger pour fixation disponible en
- Pour transmettre le force de freinage, utiliser **toujours** borne à tige avec anneau de retenue type Seeger.

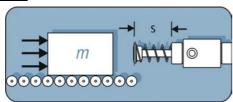
Туре	Course [mm]		freinage N]	G (Filetage en option)	A [mm]	B [mm]	C [mm]	Poids [g]
		min.	max.					
HBV 0.5	12	25	5400	M24x1,0 ou M24x1,5	161	17,4	109	330
HBV 1	25	25	5400	M24x1,0 ou M24x1,5	199	30,1	134	350
HBV 2	50	25	5400	M24x1,0 ou M24x1,5	276	55,5	186	470
HBV 3	75	25	5400	M24x1,0 ou M24x1,5	352	81,0	236	540

Formules de sélection:

Les paramètres suivants doivent être connus pour le calcul d'absorption d'énergie :

1. Masse à freiner ou à arrêter **m** [kg]

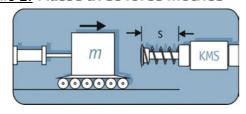
2. Vitesse d'impact [m/s]


3. Les forces extérieures **F** [N]

4. Nombre de courses par heure C [1/h]

Les calculs de charge sont fondés sur les paramètres suivants.

1. Absorption d'énergie/course E_T [Nm] [Nm/h] 2. Absorption d'énergie/h E_{TC} 3. Masse effective [kg] me


Formule 1: Masse sans force motrice

 $E_K/E_T = \frac{1}{2} \cdot \mathbf{m} \cdot \mathbf{v}^2$ $= \frac{1}{2} \cdot 50 \text{ kg} \cdot (1.5 \text{ m/s})^2$ = 56 Nm E_TC $= E_{\tau} \cdot C$ = 56 Nm · 100 1/h = 5600 Nm/h $= 2 \cdot E_T / v^2$ $= 2 \cdot 56 \text{ Nm} / (1.5 \text{ m/s})^2$ = 50 kg

→ SES 11 x 25 B convient

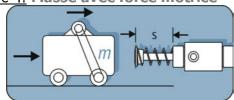
Formule 2: Masse avec force motrice

= 100 kgMasse Vitesse effective = 1,5 m/s F_{D} = 1000 NForce pneumatique C = 200 1/hNombre de courses/h $= 0.025 \,\mathrm{m}$ Course

 $= \frac{1}{2} \cdot \mathbf{m} \cdot \mathbf{v}^2$ $= \frac{1}{2} \cdot 100 \text{ kg} \cdot (1.5 \text{ m/s})^2$ E_{K} = 112,5 Nm $= F_D \cdot s$ E_W = 1000 N · 0,025 m = 25 Nm $= E_K + E_W$ = 112,5 Nm + 25 Nm = 137,5 Nm E_{T} $= E_T \cdot C$ = 137,5 Nm · 200 1/h = 27500 Nm/h $= 2 \cdot E_T / v^2$ $= 2 \cdot 137,5 \text{ Nm} / (1,5 \text{ m/s})^2$ = 122 kg m_e

→ SES 1.1 M x 1 B convient

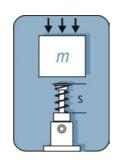
Formule 3: Masse sur rouleaux motorisés


m	= 900 kg	Masse
V	= 1,0 m/s	Vitesse effective
С	= 200 1/h	Nombres de courses/h
S	= 0,05 m	Course
μ	= 0,3	Coéfficient de friction acier/acier

= $\frac{1}{2} \cdot m \cdot v^2$ = $\frac{1}{2} \cdot 900 \text{ kg} \cdot (1.0 \text{ m/s})^2$ = 450 Nm E_{κ} = $m \cdot \mu \cdot g \cdot s$ = 900 kg · 0,3 · 9,81 m/s² · 0,05 m = 132 Nm E_W $= E_K + E_W$ = 450 Nm + 137,5 Nm = 582 Nm E_T $= E_T \cdot C$ $= 582 \text{ Nm} \cdot 200 \text{ 1/h}$ = 116400 Nm/h E_{TC} $= 2 \cdot E_T / v^2$ $= 2 \cdot 582 \text{ Nm} / (1.0 \text{ m/s})^2$ = **1164** kg

→ STD 2.0 M x 2 convient

Formule 4: Masse avec force motrice



m	= 3000 kg	Masse
V	= 1,4 m/s	Vitesse effective
НМ	= 2,5	Facteur de couple de maintien pour moteurs
Р	= 3 kW	Puissance d'entraînement
С	= 1/h	Nombre de courses par heure
S	= 0,125 m	Course

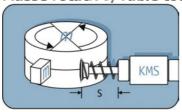
```
= \frac{1}{2} \cdot \mathbf{m} \cdot \mathbf{v}^2
                                  = \frac{1}{2} \cdot 3000 \text{ kg} \cdot (1.4 \text{ m/s})^2
                                                                                                           = 2940 Nm
\mathsf{E}_\mathsf{K}
          = 1000 \cdot P \cdot s \cdot HM / v = 1000 \cdot 3 kW \cdot 0,125 m \cdot 2,5 / 1,4 m/s
                                                                                                        = 670 Nm
\mathsf{E}_\mathsf{W}
         = E_K + E_W = 2940 Nm + 670 Nm
                                                                                                          = 3610 Nm
          = E_T \cdot C
                                        = 3610 \text{ Nm} \cdot 1 \text{ 1/h}
                                                                                                         = 3610 Nm/h
E_{TC}
                                                                                                        = 3684 kg
          = 2 \cdot E_T / v^2
                                        = 2 \cdot 3610 \text{ Nm} / (1,4 \text{ m/s})^2
m_{e}
```

→ STD 3.0 M x 5 convient

Formule 5: Chute libre

m	= 50 kg	Masse
h	= 0,5 m	Hauteur de chute
С	= 300 1/h	Nombre de courses/h
S	= 0,05 m	Course

```
= \sqrt{2 \cdot g \cdot h} = \sqrt{2 \cdot 9.81 \text{ m/s}^2 \cdot 0.5 \text{ m}}
                                                                                                                               = 3,1 \text{ m/s}
                 = m \cdot g \cdot h = 50 kg · 9,81 m/s2 · 0,5 m = 245 Nm

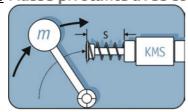

= m \cdot g \cdot s = 50 kg · 9,81 m/s2 · 0,05 m = 245 Nm

= E_K + E_W = 245 Nm + 24,5 Nm = 269,5 Nn

= E_T \cdot C = 269,5 Nm · 300 1/h = 80850 Ni
\mathsf{E}_\mathsf{K}
\mathsf{E}_\mathsf{W}
                                                                                                                             = 269,5 Nm
\mathsf{E}_\mathsf{T}
\mathsf{E}_\mathsf{TC}
                                                                                                                             = 80850 Nm/h
                  = 2 \cdot E_T / v^2
                                                     = 2 \cdot 269,5 \text{ Nm} / (3,1 \text{ m/s})^2
m_{\text{e}}
                                                                                                                             = 55 kg
```

→ STD 1.5 M x 2 convient

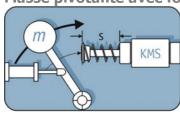
Formule 6: Masse rotative/Table tournante avec entraînement


7	CO 12	M + 15 + 1
J	$= 60 \text{ kgm}^2$	Moment d'inertie de masse
ω	= 1,2 1/s	Vitesse angulaire
r	= 0,5 m	rayon
M	= 200 Nm	Couple
С	= 1000 1/h	Nombre de courses par heure
S	= 0,025 m	Course

V	$= \omega \cdot \mathbf{r}$	$= 1,2 1/s \cdot 0,5 m$	= 0,6 m/s
E_K	$= \frac{1}{2} \cdot \mathbf{J} \cdot \omega^2$	$= \frac{1}{2} \cdot 60 \text{ kgm}^2 \cdot (1.2 \text{ 1/s})^2$	= 43,2 Nm
E_W	$= M \cdot s / r$	= 200 Nm · 0,025 m / 0,5 m	= 10 Nm
E_T	$= E_K + E_W$	= 43,2 Nm + 10 Nm	= 53,2 Nm
E_TC	$= E_T \cdot C$	= 53,2 Nm · 1000 1/h	= 53200 Nm/h
m_{e}	$= 2 \cdot E_T / v^2$	$= 2 \cdot 53,2 \text{ Nm} / (0,6 \text{ m/s})^2$	= 296 kg

→ STD 1.0 M convient

Formule 7: Masse pivotante avec couple moteur

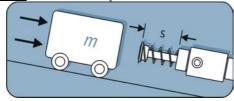



```
= 30 \text{ kg}
                              Masse
           = 1.0 \text{ m/s}
                              Vitesse d'impact
\boldsymbol{v}_{m}
           = 0.4 \, \text{m}
R_{m}
           = 0.6 \, \text{m}
                              Rayon centre de gravité de la masse
           = 40 Nm
                              Couple
Μ
C
                              Nombre de courses par heure
           = 1500/h
           = 0.02 m
                              Course
```

```
\mathsf{E}_\mathsf{K}
             = \frac{1}{2} \cdot \mathbf{m} \cdot \mathbf{v}^2
                                         = \frac{1}{2} \cdot 30 \text{ kg} \cdot (1.0 \text{ m/s})^2
                                                                                                = 15 Nm
             = M \cdot s / r
                                         = 40 \text{ Nm} \cdot 0.02 \text{ m} / 0.4 \text{ m/s}
\mathsf{E}_\mathsf{W}
                                                                                                = 2 Nm
             = E_K + E_W
                                         = 15 \text{ Nm} + 2 \text{ Nm}
                                                                                                = 17 Nm
E_{TC}
             = E_T \cdot C
                                        = 17 Nm · 1500 1/h
                                                                                                = 25500 Nm/h
             = v_m \cdot r / R_m= 2 \cdot E_T / v^2
                                        = 1,0 m/s \cdot 0,4 m / 0,6 m = 0,67 m/s
= 2 \cdot 17 Nm / (0,67 m/s)<sup>2</sup> = 76 kg
٧
```

→ SES 10 x 20 A convient

Formule 8: Masse pivotante avec force motrice


m	= 3000 kg	Masse
\mathbf{v}_{m}	= 1,5 m/s	Vitesse d'impact
r	= 1,0 m	rayon
R_{m}	= 1,3 m	Rayon centre de gravité de la masse
R_{F}	= 0,5 m	Rayon force pneumatique
F_D	= 4000 N	Force pneumatique
С	= 150/h	Nombre de courses par heure
S	= 0,1 m	Course

```
= \frac{1}{2} \cdot m \cdot v^2 = \frac{1}{2} \cdot 3000 \text{ kg} \cdot (\frac{1}{5} \text{ m/s})^2
\mathsf{E}_{\mathsf{K}}
                                                                                                         = 3375 Nm
               = F_D \cdot s \cdot R_F / r = 4000 \text{ N} \cdot 0.1 \text{ m} \cdot 0.5 \text{ m} / 1.0 \text{ m} = 200 \text{ Nm}
E_{W}
               = E_K + E_W = 3375 \text{ Nm} + 200 \text{ Nm} = 3575 \text{ Nm}

= E_T \cdot C = 3575 \text{ Nm} \cdot 150 \text{ 1/h} = 536.25 \text{ km}
\mathsf{E}_\mathsf{T}
\mathsf{E}_\mathsf{TC}
               = E_T \cdot C
                                            = 3575 Nm · 150 1/h
                                                                                                      = 536,25 kNm/h
               = v_m \cdot r / R_m = 1,5 m/s · 1,0 m/1,3 m
= 2 · E_T / v^2 = 2 · 3575 Nm / (1,15 m/s)<sup>2</sup>
                                                                                                        = 1,15 m/s
V
                                            = 2 \cdot 3575 \text{ Nm} / (1,15 \text{ m/s})^2 = 1352 \text{ kg}
m_{\text{e}}
```

→ STD 4.0 M x 4 convient

Formule 9: Masse sur plan incliné

m	= 10 kg	Masse
h	= 0,2 m	hauteur centre de gravité de la masse
		Angle
α	= 20°	Nombre de courses par heure
С	= 500 1/h	Course
S	= 0,016 m	

E_K	$= m \cdot g \cdot h$	$= 10 \text{ kg} \cdot 9.81 \text{ m/s}^2 \cdot 0.2 \text{ m}$	= 19,62 Nm
E_W	$= \mathbf{m} \cdot \mathbf{g} \cdot \mathbf{s} \cdot \sin \alpha$	= 10 kg \cdot 9,81 m/s ² \cdot 0,016 m \cdot sin 20°	= 0,54 Nm
E_T	$= E_K + E_W$	= 19,62 Nm + 0,54 Nm	= 20,16 Nm
E_TC	$= E_T \cdot C$	= 20,16 Nm · 500 1/h	= 53200 Nm/h
V	$=\sqrt{2\cdot g\cdot h}$	$= \sqrt{2 \cdot 9,81 \text{ m/s}^2 \cdot 0,2 \text{ m}}$	= 1,98 m/s
m_{e}	$= 2 \cdot E_T / v^2$	$= 2 \cdot 20,16 \text{ Nm} / (1,98 \text{ m/s})^2$	= 10,3 kg

→ SES 14 S convient

Formules supplémentaires:

Masse effective m _e [kg]	Force antagoniste F _B [N]
$m_e = 2 \cdot E_T/v^2$	$F_B = 12 \cdot E_T/s$
Décélération a [m/s²]	Temps de freinage t _B [s]
a=06 ·v ²/s	t _B =2,5 ·s/v

A condition que l'amortisseur soit ajusté correctement. Le support doit être construit pour pouvoir supporter la force de choc afin de compenser des erreurs éventuelles d'ajustage de l'amortisseur.

Exécutions spéciales disponibles en option:	
Description	Domaines d'application
Amortisseur avec fixation articulée	Oeil à fourche
	Oeil des deux côtés
Amortisseur avec courbe caractéristique adaptée	Vitesse augmentée
	Vitesse diminuée
Amortisseur en acier inoxydable	Ambiance agressive
	Utilisation au dehors
Amortisseur avec joints speciaux d'étanchéité	Ambiance agressive
	Température ambiante variante
Amortisseur avec course spéciale	
Amortisseur avec corps nickelé	Ambiance agressive
	Utilisation extérieure
Amortisseur avec réservoir air/huile	 Hautes fréquences demandant une absorption
	importante d'énergie/h
	Retour commandé de la tige
Amortisseur avec filetage de fixation irrégulier	Filetage de fixation prédéfini

Nos représentations à létranger:

Autriche tat technom Antriebstechnik GmbH

Haidbachstraße 1 A-4061 Pasching

Téléphone: +43 72 29 6 48 40 0 Téléfax: +43 72 29 6 18 17 eMail: info@tat.at Internet: www.tat.at

Suisse Ringspann AG

Sumpfstraße 7 CH-6312 Steinhausen

Téléphone: +41 41 7 48 09 00 Téléfax: +41 41 7 48 09 09 eMail: info@ringspann.ch Internet: www.ringspann.ch

France dimafluid S. A. S.

69/73 Bd. Victor Hugo

Bât 6.8 F-93400 Saint-Ouen

Téléphone: +33 01 49 45 65 65 Téléfax: +33 01 49 45 65 30 dimafluid@dimafluid.com eMail: Internet: www.dimafluid.com

Italie Delta Systems SpA

Via C. Pavese, 21 I-20090 Opera (MI)

Téléphone: +39 02 57 69 51 Téléfax: +39 02 57 69 53 38 eMail: info@delta-s.com Internet: www.delta-s.com

Espagne Tecnautomat S. A.

General Salazar, 7 E-48012 Bilbao

Téléphone: +34 94 4 43 84 40 Téléfax: +34 94 4 43 78 13 eMail: bilbao@tecnautomat.com Internet: www.tecnautomat.com

République tat - pohonová technika spol. s r.o.

tchèque Hraniční 53

CZ - 370 06 České Budějovice Téléphone: +420 387 414 414 Téléfax: +420 387 414 415 eMail: tat@cz.tat.at Internet: www.tat.at

Technique d'entraînement

RINGSPANN AG

Réducteurs de

Technique de mesure

dimafluid S. A. S, Agence de l'Est

+33 03 80 45 17 17

+33 03 80 45 30 69

www.dimafluid.com

dimafluid@dimafluid.com

14 rue Nodot

F-21000 Dijon

Téléphone:

Téléfax:

Internet:

eMail:

Serrage de précision

Sumpfstrasse 7 CH-6303 Zug

précision

Téléphone +41 41 748 09 00 Téléfax +41 41 748 09 09 www.ringspann.ch info@ringspann.ch