

# **RINGSPANN AG**



#### Wir über uns

## Langjährige Erfahrung

Seit 50 Jahren begleiten wir Maschinenbauer als Partner für kompakte Kupplungssysteme.

Durch diese Erfahrung in der Antriebstechnik besitzen wir ein umfangreiches Know-How in vielen Branchen, denn wir kennen und verstehen die unterschiedlichsten Anwendungen und können Sie so optimal unterstützen.

sichere Wahl. Egal, ob es sich um ein Serienprodukt, eine auf eine Branche angepasste Kupplung oder eine speziell für eine Anwendung entwickelte Kupplungslösung handelt.

#### Produkte mit hoher technischer Funktionalität

Unser Produktprogramm umfasst

Unsere Produkte sind immer eine torsionssteife Kupplungen, die sich durch eine Kompaktheit und durch ihre hohe Funktionalität auszeichnen. Ihre technischen Alleinstellungsmerkmale bieten dem technischen Anwender eine Vielzahl von praxisrelevanten Vorteilen. Namhafte OEMs aus allen Bereichen des Maschinenbaus zählen zu unseren Partnern.

50 Jahre Erfahrung Vertrauen u. Partnerschaft Präzisionskupplungen Anwendungen verstehen und lösen Permanente Entwicklung





## Branchenspezifische Ausführungen

Wir verstehen die Anwendungen in den unterschiedlichsten Branchen und konzipieren hierauf abgestimmte Kupplungsausführungen. Egal ob in der Lebensmittelindustrie, Vakuumindustrie, in der Verpackungs- oder Druckindustrie oder in der Sensorik oder Medizintechnik - wir fühlen uns überall zuhause.





## **Optimierung Ihres Antriebs**

Eine enge Zusammenarbeit mit unseren Kunden bei der Konzeption und Umsetzung eines Projekts resultiert in exakt auf anwendungsspezifische Anforderungen angepasste Kupplungslösungen. Umfassende Beratung, FEM-Analysen, Abstimmung von Prototypen und Anfertigung von Rapid Prototyping Modellen sowie Bestätigung der errechneten

Konstruktionsdaten auf modernen Prüfständen - all dies sorgt für die Optimierung Ihres Antriebsstranges.

#### Kontinuierliche Entwicklung

Ihre Wünsche sind unser Ansporn - neue Impulse aus dem Markt fließen bei uns in permanente Weiterentwicklungen unserer Produkte ein.

Individuelle Beratung Kundennähe Abgestimmte Kupplungssysteme Branchen Know-How Optimierung des Antriebs

## **Einführung Servoflex**



#### Die perfekte Servokupplung

Die Servoflex ist auf die anspruchsvollen Anforderungen moderner Servomotoren hin entwickelt. Sie verbindet höchste Stopp- und Reversierbetrieb, bei Servoflex - in cooperation with

Präzisionsansprüche mit einem denen eine absolute Positioniergeringen ment. Dynamische aufgaben mit häufigem Start-

Massenträgheitsmo- genauigkeit im Vordergrund steht, Antriebs- sind ihr Metier.



#### **Technik**

#### Hochpräzise

Das Design des Lamellenpaketes ist optimal auf die Anforderungen heutiger Servomotoren abgestimmt. Geschichtete biegeelastische Lamellen aus hochwertigem rostfreien Edelstahl 1.4301 bilden ein Lamellenpaket mit ausgeprägter Torsionssteifigkeit für hochpräzise Antriebsaufgaben.

## Geringste Massenträgheit

Die Klemmnaben aus hochfestem

Aluminium sind zusätzlich eloxiert. Massenträgheitsreduziert gestaltet sind sie ideal für hochdynamische Positionier- und Vorschubaufgaben.

#### **FEM-optimiert**

Die Performance der Lamelle ist zusätzlich auf Basis von FEM-Analysen berechnet und optimiert. Der Fokus ist auf hohe Torsionssteife und Drehmomentübertragung gelegt. Die biegeelastischen Lamellen ermöglichen weiterhin den zuverlässigen Ausgleich von Wellenverlagerungen.

#### **Breites Leistungsspektrum**

Das Programm der Servoflex umfasst 14 Kupplungsgrößen in einem Drehmomentbereich von 0,25 bis 250 Nm. Von Miniaturanwendungen bis zu Druck- und Verpackungsmaschinen reicht das Spektrum der präzisen Servokupplungen.



## Ausführungen







Typ A Typ B

# Massenträgheitsreduzierte Bauweise

Servoflex sind aus hochfestem Aluminium gefertigt und bieten dementsprechend ein sehr geringes Massenträgheitsmoment – essentiell für dynamische Servoantriebe.

Bei einigen Kupplungsgrößen bietet das Programm 3 verschiedene Varianten. Abhängig von den ge-

wählten Bohrungsdurchmessern wird die Servoflex ab Werk mit abgesetzter Nabe (Typ A), als Mischform (Typ B) oder bei beidseitig großen Bohrungsdurchmessern als Typ C geliefert. Durch Wahl der entsprechenden-Bohrungsdurchmesser kann die Reduzierung des Massenträg-

heitsmoments auf ein Minimum vorgenommen werden. Bei welchen Bohrungsdurchmessern Sie welche der 3 Typen erhalten, entnehmen Sie bitte den nachfolgenden technischen Daten auf Seite 8-11.



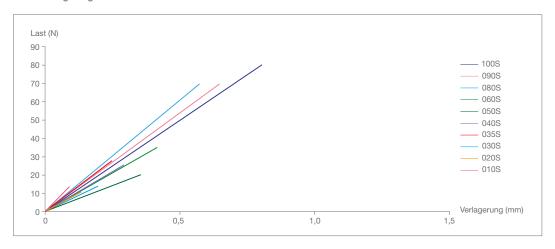
#### Servoflex einfachkardanisch

Die einfachkardanische Servoflex bietet höchstmögliche Torsionssteifigkeit in Verbindung mit einer sehr kompakten Bauform. Zusätzlich bietet sie einen Ausgleich axialer und angularer Wellenverlagerungen. Ebenfalls bieten zwei einfachkardanische Servoflex die ideale Kombinationsmöglichkeit zur Zwischenwellenkupplung für hochpräzise, synchronisierte Arbeitsprozesse in Mehrachssystemen.



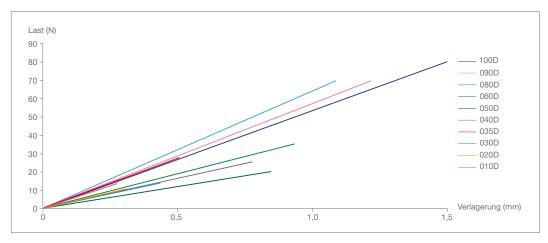
#### Servoflex doppelkardanisch

Die doppelkardanische Servoflex bietet neben ihrer hohen Torsionssteife zusätzlich den Ausgleich axialer, angularer und radialer Wellenverlagerungen. Sie ist ideal in dynamischen Anwendungen, wo es auf einen hochpräzisen Bewegungsablauf in Verbindung mit dem Ausgleich universeller Wellenverlagerungen ankommt.


## **Material**



# Geringe Lagerbelastung bei Verlagerung

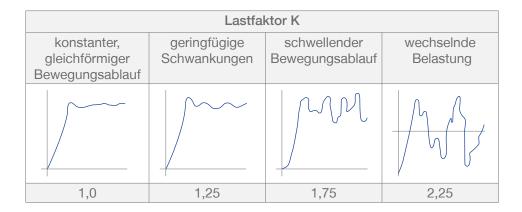

#### Servoflex einfachkardanisch

Axiale Verlagerung - Axiallast



## Servoflex doppelkardanisch

Axiale Verlagerung - Axiallast




## Auswahlablauf

Bei der Auswahl der Servoflex spielen die verschiedenen technischen Parameter eine entscheidende Rolle. Parameter wie maximale Drehzahlen, auftretende Wellenverlagerungen und Antriebsmoment sind zu berücksichtigen.

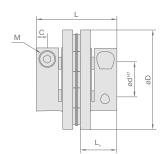
 Hauptanwendungsbereiche der Servoflex sind dynamische Servomotoren. Die Auslegung der Servoflex erfolgt entsprechend nach dem höchsten, regelmäßig zu übertragenden Spitzenmoment T<sub>AS</sub> des Servomotors multipliziert mit dem Stoß- oder Lastfaktor K.

$$T_{KN} \ge T_{AS} \times K$$
 (Nm)

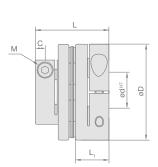


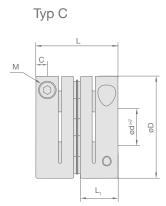
In der Praxis hat sich folgende Formel bewährt:

$$T_{KN} \ge T_{AS} \times (1,2-1,5)$$
 (Nm)


- 2. Bitte beachten Sie bei einer gewählten Kupplungsgröße die maximal zulässigen Bohrungsdurchmesser und die entsprechende Verlagerungskapazität. Diese entnehmen Sie bitte aus der Tabelle der jeweiligen Kupplungsgröße. Die in dem Katalog angegebenen Wellenverlagerungswerte sind Maximalwerte. Bei kombinierten Verlagerungen müssen diese so abgestimmt werden, dass die Summe der tatsächlichen Verlagerungen 100 % nicht überschreiten darf.
- 3. Weitere Faktoren können in den Auslegungsprozess der Servoflex berücksichtigt werden, wie Resonanzfrequenz oder spezielle Einsatz- und Umgebungsbedingungen. Fragen Sie hierzu gerne unsere Anwendungstechniker.

#### **Temperaturbereich**


-30°C bis +100°C


#### Einfachkardanisch

Тур А









## **Spezifikationen**

| Modell   | D  | L     | L <sub>1</sub> | С    | М    | M <sub>A</sub> | Тур*        | m               | J                       | T <sub>KN</sub> | $C_{\scriptscriptstyleT}$ | max.<br>Drehzahl  | Verlager     | ungen       |
|----------|----|-------|----------------|------|------|----------------|-------------|-----------------|-------------------------|-----------------|---------------------------|-------------------|--------------|-------------|
|          | mm | mm    | mm             | mm   |      | Nm             |             | g               | kgm²x10 <sup>-6</sup>   | Nm              | Nm/rad                    | min <sup>-1</sup> | angular<br>° | axial<br>mm |
| SFC-002S | 12 | 12,35 | 5,9            | 1,9  | M1,6 | 0,25           | С           | 3               | 0,06                    | 0,25            | 190                       | 10.000            | 0,5          | 0,04        |
| SFC-005S | 16 | 16,7  | 7,85           | 2,5  | M2   | 0,5            | С           | 7               | 0,25                    | 0,6             | 500                       | 10.000            | 0,5          | 0,05        |
| SFC-010S | 19 | 19,35 | 9,15           | 3,15 | M2,5 | 1              | С           | 11              | 0,58                    | 1               | 1.400                     | 10.000            | 1            | 0,1         |
| SFC-020S | 26 | 23,15 | 10,75          | 3,3  | M2,5 | 1              | С           | 25              | 2,36                    | 2               | 3.700                     | 10.000            | 1            | 0,15        |
| SFC-025S | 29 | 23,4  | 10,75          | 3,3  | M2,5 | 1              | С           | 29              | 3,67                    | 4               | 5.600                     | 10.000            | 1            | 0,19        |
| SFC-030S | 34 | 27,3  | 12,4           | 3,75 | M3   | 1,7            | A<br>B<br>C | 33<br>41<br>49  | 4,00<br>6,06<br>8,12    | 5               | 8.000                     | 10.000            | 1            | 0,2         |
| SFC-035S | 39 | 34    | 15,5           | 4,5  | M4   | 3,8            | С           | 84              | 18,43                   | 8               | 18.000                    | 10.000            | 1            | 0,25        |
| SFC-040S | 44 | 34    | 15,5           | 4,5  | M4   | 3,8            | A<br>B<br>C | 76<br>90<br>105 | 16,42<br>22,98<br>29,53 | 10              | 20.000                    | 10.000            | 1            | 0,3         |

 $<sup>^*</sup>$  Nabentyp definiert sich durch die jeweilige Bohrungskombination einer Kupplungsgröße; bitte beachten Sie hierzu die nachfolgende Tabelle "Bohrungsdurchmesser". Werte für Torsionssteifigkeit beziehen sich auf die Werte für das Lamellenpaket; Gewicht und Massenträgheitsmoment sind gemessen bei jeweils max. Bohrung einer Kupplungsgröße  $M = Schraubengröße, M_A = Schraubenanzugsmoment, T_{KN} = Nenndrehmoment, C_T = Torsionssteifigkeit, m = Masse, J = Massenträgheitsmoment$ 

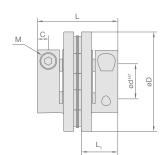
## Bohrungsdurchmesser

| Modell   |   |   |   |   |   |   |    |    |    |    |    | d mm |    |    |    |    |    |    |    |    |    |    |    |
|----------|---|---|---|---|---|---|----|----|----|----|----|------|----|----|----|----|----|----|----|----|----|----|----|
|          | 3 | 4 | 5 | 6 | 8 | 9 | 10 | 11 | 12 | 14 | 16 | 18   | 19 | 20 | 22 | 24 | 25 | 30 | 32 | 35 | 40 | 42 | 45 |
| SFC-002S | - | - | - |   |   |   |    |    |    |    |    |      |    |    |    |    |    |    |    |    |    |    |    |
| SFC-005S | - | - | - | - |   |   |    |    |    |    |    |      |    |    |    |    |    |    |    |    |    |    |    |
| SFC-010S | - | - | - | - | - |   |    |    |    |    |    |      |    |    |    |    |    |    |    |    |    |    |    |
| SFC-020S |   | - | - | - | - | - | -  |    |    |    |    |      |    |    |    |    |    |    |    |    |    |    |    |
| SFC-025S |   |   |   | - | - | - | -  | -  |    | -  |    |      |    |    |    |    |    |    |    |    |    |    |    |
| SFC-030S |   |   |   |   |   |   |    | -  |    | -  |    |      |    |    |    |    |    |    |    |    |    |    |    |
| SFC-035S |   |   |   |   | - |   | -  | -  | -  |    | -  |      |    |    |    |    |    |    |    |    |    |    |    |
| SFC-040S |   |   |   |   |   |   |    |    |    |    | •  | •    | •  |    |    |    |    |    |    |    |    |    |    |

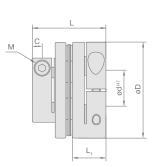
<sup>□</sup> Bei diesen Bohrungsdurchmessern ist die Kupplung mit abgesetzter, massenträgheitsoptimierter Nabe ausgestattet (Typ A);

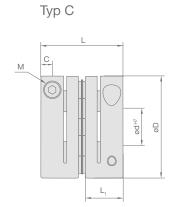
Weitere Bohrungsdurchmesser als dargestellt sind auf Anfrage erhältlich. Bitte beachten Sie unseren Auswahlablauf auf der Seite 7.

## Bestellbeispiel:


## SFC-030S Ø10 Ø12

Servoflex Baugröße 030 einfachkardanische Ausführung, Bohrungen 10 mm (abgesetzte Nabe), 12 mm; Sie erhalten die Servoflex als Typ B


<sup>■</sup> Ist d1 und/oder d2 größer als die mit 🗆 gekennzeichneten Bohrungen, wird die Servoflex einseitig (Typ B) oder beidseitig mit voller Nabe ausgestattet (Typ C)


#### Einfachkardanisch

Тур А









## **Spezifikationen**

| Modell   | D   | L    | L <sub>1</sub> | С    | М  | M <sub>A</sub> | Тур*        | m                 | J                          | T <sub>KN</sub> | $C_{T}$ | max.<br>Drehzahl  | Verlager     | ungen       |
|----------|-----|------|----------------|------|----|----------------|-------------|-------------------|----------------------------|-----------------|---------|-------------------|--------------|-------------|
|          | mm  | mm   | mm             | mm   |    | Nm             |             | g                 | kgm²x10 <sup>-6</sup>      | Nm              | Nm/rad  | min <sup>-1</sup> | angular<br>° | axial<br>mm |
| SFC-050S | 56  | 43,4 | 20,5           | 6    | M5 | 8              | A<br>B<br>C | 156<br>185<br>214 | 54,88<br>77,10<br>99,33    | 25              | 32.000  | 10.000            | 1            | 0,4         |
| SFC-055S | 63  | 50,6 | 24             | 7,75 | M6 | 14             | С           | 314               | 188                        | 40              | 50.000  | 10.000            | 1            | 0,42        |
| SFC-060S | 68  | 53,6 | 25,2           | 7,75 | M6 | 14             | A<br>B<br>C | 279<br>337<br>396 | 143,70<br>206,10<br>268,50 | 60              | 70.000  | 10.000            | 1            | 0,45        |
| SFC-080S | 82  | 68   | 30             | 9    | M8 | 28             | С           | 727               | 709,30                     | 100             | 140.000 | 10.000            | 1            | 0,55        |
| SFC-090S | 94  | 68,3 | 30             | 9    | M8 | 28             | С           | 959               | 1.227                      | 180             | 100.000 | 10.000            | 1            | 0,65        |
| SFC-100S | 104 | 69,8 | 30             | 9    | M8 | 28             | С           | 1.181             | 1.858                      | 250             | 120.000 | 10.000            | 1            | 0,74        |

<sup>\*</sup> Nabentyp definiert sich durch die jeweilige Bohrungskombination einer Kupplungsgröße; bitte beachten Sie hierzu die nachfolgende Tabelle "Bohrungsdurchmesser". Werte für Torsionssteifigkeit beziehen sich auf die Werte für das Lamellenpaket; Gewicht und Massenträgheitsmoment sind gemessen bei jeweils max. Bohrung einer Kupplungsgröße

## Bohrungsdurchmesser

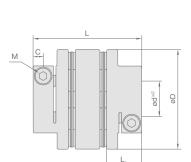
| Modell   |   |   |   |   |   |   |    |    |    |    |    | d mm |    |    |    |    |    |    |    |    |    |    |    |
|----------|---|---|---|---|---|---|----|----|----|----|----|------|----|----|----|----|----|----|----|----|----|----|----|
|          | 3 | 4 | 5 | 6 | 8 | 9 | 10 | 11 | 12 | 14 | 16 | 18   | 19 | 20 | 22 | 24 | 25 | 30 | 32 | 35 | 40 | 42 | 45 |
| SFC-050S |   |   |   |   |   |   |    |    |    |    |    |      |    | -  | -  | -  | -  |    |    |    |    |    |    |
| SFC-055S |   |   |   |   |   |   |    |    |    | -  |    | -    | -  | -  | -  | -  | -  | -  |    |    |    |    |    |
| SFC-060S |   |   |   |   |   |   |    |    |    |    |    |      |    |    |    |    | -  | -  |    |    |    |    |    |
| SFC-080S |   |   |   |   |   |   |    |    |    |    |    |      |    | -  | -  | -  | -  | -  | -  |    |    |    |    |
| SFC-090S |   |   |   |   |   |   |    |    |    |    |    |      |    |    |    |    | -  | -  | -  |    | -  |    |    |
| SFC-100S |   |   |   |   |   |   |    |    |    |    |    |      |    |    |    |    |    |    |    | -  | -  | -  | -  |

<sup>□</sup> Bei diesen Bohrungsdurchmessern ist die Kupplung mit abgesetzter, massenträgheitsoptimierter Nabe ausgestattet (Typ A);

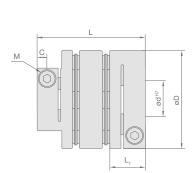
Weitere Bohrungsdurchmesser als dargestellt sind auf Anfrage erhältlich. Bitte beachten Sie unseren Auswahlablauf auf der Seite 7.

## Bestellbeispiel:

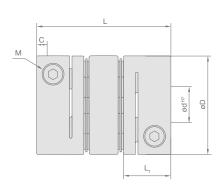
## SFC-050S Ø16 Ø20


Servoflex Baugröße 050 einfachkardanische Ausführung, Bohrungen 16 mm (abgesetzte Nabe), 20 mm; Sie erhalten die Servoflex als Typ B

 $<sup>\</sup>mathsf{M} = \mathsf{Schraubengr\"oβe}, \ \mathsf{M}_{\mathsf{A}} = \mathsf{Schraubenanzugsmoment}, \ \mathsf{T}_{\mathsf{KN}} = \mathsf{Nenndrehmoment}, \ \mathsf{C}_{\mathsf{T}} = \mathsf{Torsionssteifigkeit}, \ \mathsf{m} = \mathsf{Masse}, \ \mathsf{J} = \mathsf{Massentr\"{a}gheitsmoment}$ 


<sup>■</sup> Ist d1 und/oder d2 größer als die mit 🗆 gekennzeichneten Bohrungen, wird die Servoflex einseitig (Typ B) oder beidseitig mit voller Nabe ausgestattet (Typ C)

## Doppelkardanisch


Typ A



Тур В



Тур С



Verlagerungen

radial mm

0,03

0,05 0,11

0,15

0,16

0,18

0,24

0,24

axial

mm

0,08

0.2

0,33

0,38

0,4

0,5

0,6

## **Spezifikationen**

| Modell   | D  | L    | L <sub>1</sub> | С    | M    | M <sub>A</sub> | Тур*        | m                 | J                       | T <sub>KN</sub> | C <sub>T</sub> | max.<br>Drehzahl  |        |
|----------|----|------|----------------|------|------|----------------|-------------|-------------------|-------------------------|-----------------|----------------|-------------------|--------|
|          | mm | mm   | mm             | mm   |      | Nm             |             | g                 | kgm²x10 <sup>-6</sup>   | Nm              | Nm/rad         | min <sup>-1</sup> | angula |
| SFC-002D | 12 | 15,7 | 5,9            | 1,9  | M1,6 | 0,25           | С           | 4                 | 0,07                    | 0,25            | 95             | 10.000            | 0,5    |
| SFC-005D | 16 | 23,2 | 7,85           | 2,5  | M2   | 0,5            | С           | 10                | 0,36                    | 0,6             | 250            | 10.000            | 0,5    |
| SFC-010D | 19 | 25,9 | 9,15           | 3,15 | M2,5 | 1              | С           | 15                | 0,79                    | 1               | 700            | 10.000            | 1      |
| SFC-020D | 26 | 32,3 | 10,75          | 3,3  | M2,5 | 1              | С           | 35                | 3,40                    | 2               | 1.850          | 10.000            | 1      |
| SFC-025D | 29 | 32,8 | 10,75          | 3,3  | M2,5 | 1              | С           | 40                | 5,26                    | 4               | 2.800          | 10.000            | 1      |
| SFC-030D | 34 | 37,8 | 12,4           | 3,75 | M3   | 1,7            | A<br>B<br>C | 53<br>61<br>69    | 7,33<br>9,39<br>11,45   | 5               | 4.000          | 10.000            | 1      |
| SFC-035D | 39 | 48   | 15,5           | 4,5  | M4   | 3,8            | С           | 123               | 26,78                   | 8               | 9.000          | 10.000            | 1      |
| SFC-040D | 44 | 48   | 15,5           | 4,5  | M4   | 3,8            | A<br>B<br>C | 122<br>136<br>151 | 29,49<br>36,05<br>42,61 | 10              | 10.000         | 10.000            | 1      |

<sup>\*</sup> Nabentyp definiert sich durch die jeweilige Bohrungskombination einer Kupplungsgröße; bitte beachten Sie hierzu die nachfolgende Tabelle "Bohrungsdurchmesser". Werte für Torsionssteifigkeit beziehen sich auf die Werte für das Lamellenpaket; Gewicht und Massenträgheitsmoment sind gemessen bei jeweils max. Bohrung einer Kupplungsgröße, ¹pro Lamellenpaket

#### Bohrungsdurchmesser

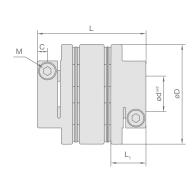
| Modell   |   |   |   |   |   |   |    |    |    |    |    | d mm |    |    |    |    |    |    |    |    |    |    |    |
|----------|---|---|---|---|---|---|----|----|----|----|----|------|----|----|----|----|----|----|----|----|----|----|----|
|          | 3 | 4 | 5 | 6 | 8 | 9 | 10 | 11 | 12 | 14 | 16 | 18   | 19 | 20 | 22 | 24 | 25 | 30 | 32 | 35 | 40 | 42 | 45 |
| SFC-002D | - | - | - |   |   |   |    |    |    |    |    |      |    |    |    |    |    |    |    |    |    |    |    |
| SFC-005D | - | - | - | - |   |   |    |    |    |    |    |      |    |    |    |    |    |    |    |    |    |    |    |
| SFC-010D | - | - | - | - | - |   |    |    |    |    |    |      |    |    |    |    |    |    |    |    |    |    |    |
| SFC-020D |   | - | - | - |   | - |    |    |    |    |    |      |    |    |    |    |    |    |    |    |    |    |    |
| SFC-025D |   |   |   | - | - |   | -  | -  | -  | -  |    |      |    |    |    |    |    |    |    |    |    |    |    |
| SFC-030D |   |   |   |   |   |   |    |    |    | -  |    |      |    |    |    |    |    |    |    |    |    |    |    |
| SFC-035D |   |   |   |   | - |   | -  | -  | -  | -  | -  |      |    |    |    |    |    |    |    |    |    |    |    |
| SFC-040D |   |   |   |   |   |   |    |    |    |    | -  | -    | •  |    |    |    |    |    |    |    |    |    |    |

<sup>□</sup> Bei diesen Bohrungsdurchmessern ist die Kupplung mit abgesetzter, massenträgheitsoptimierter Nabe ausgestattet (Typ A);

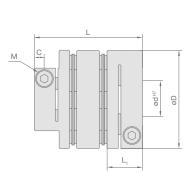
Weitere Bohrungsdurchmesser als dargestellt sind auf Anfrage erhältlich. Bitte beachten Sie unseren Auswahlablauf auf der Seite 7.

## Bestellbeispiel:

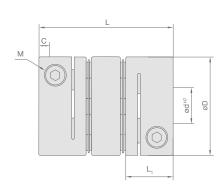
#### SFC-030D Ø10 Ø12


Servoflex Baugröße 030 doppelkardanische Ausführung, Bohrungen 10 mm (abgesetzte Nabe), 12 mm; Sie erhalten die Servoflex als Typ B

 $M = Schraubengr\"{o}Be, \ M_A = Schraubenanzugsmoment, \ T_{KN} = Nenndrehmoment, \ C_T = Torsionssteifigkeit, \ m = Masse, \ J = Massentr\"{a}gheitsmoment$ 


<sup>■</sup> Ist d1 und/oder d2 größer als die mit 🗆 gekennzeichneten Bohrungen, wird die Servoflex einseitig (Typ B) oder beidseitig mit voller Nabe ausgestattet (Typ C)

## Doppelkardanisch






Тур В



Тур С



## **Spezifikationen**

| Modell   | D   | L     | L <sub>1</sub> | С    | М  | M <sub>A</sub> | Тур*   | m          | J                     |
|----------|-----|-------|----------------|------|----|----------------|--------|------------|-----------------------|
|          | mm  | mm    | mm             | mm   |    | Nm             |        | g          | kgm²x10 <sup>-6</sup> |
|          |     |       |                |      |    |                |        |            |                       |
|          |     |       |                | _    |    | _              | Α      | 246        | 96,94                 |
| SFC-050D | 56  | 59,8  | 20,5           | 6    | M5 | 8              | B<br>C | 275<br>304 | 119,20                |
|          |     |       |                |      |    |                | C      | 304        | 141,40                |
| SFC-055D | 63  | 68,7  | 24             | 7,75 | M6 | 14             | С      | 459        | 265,00                |
|          |     |       |                |      |    |                | Α      | 440        | 252,40                |
| SFC-060D | 68  | 73,3  | 25,2           | 7,75 | M6 | 14             | B<br>C | 498        | 314,80                |
|          |     |       |                |      |    |                | C      | 556        | 377,30                |
| SFC-080D | 82  | 98    | 30             | 9    | M8 | 28             | С      | 1.051      | 1034,00               |
| SFC-090D | 94  | 98,6  | 30             | 9    | M8 | 28             | С      | 1.373      | 1776,00               |
| SFC-100D | 104 | 101,6 | 30             | 9    | M8 | 28             | С      | 1.707      | 2704,00               |

| T <sub>KN</sub> | C <sub>T</sub> | max.<br>Drehzahl  | Verl                 | agerunge     | en          |
|-----------------|----------------|-------------------|----------------------|--------------|-------------|
| Nm              | Nm/<br>rad     | min <sup>-1</sup> | angular <sup>1</sup> | radial<br>mm | axial<br>mm |
| 25              | 16.000         | 10.000            | 1                    | 0,28         | 0,8         |
| 40              | 25.000         | 10.000            | 1                    | 0,31         | 0,84        |
| 60              | 35.000         | 10.000            | 1                    | 0,34         | 0,9         |
| 100             | 70.000         | 10.000            | 1                    | 0,52         | 1,1         |
| 180             | 50.000         | 10.000            | 1                    | 0,52         | 1,3         |
| 250             | 60.000         | 10.000            | 1                    | 0,55         | 1,48        |

<sup>\*</sup> Nabentyp definiert sich durch die jeweilige Bohrungskombination einer Kupplungsgröße; bitte beachten Sie hierzu die nachfolgende Tabelle "Bohrungsdurchmesser". Werte für Torsionssteifigkeit beziehen sich auf die Werte für das Lamellenpaket; Gewicht und Massenträgheitsmoment sind gemessen bei jeweils max. Bohrung einer Kupplungsgröße, ¹pro Lamellenpaket  $M = Schraubengröße, M_A = Schraubenanzugsmoment, T_{KN} = Nenndrehmoment, C_T = Torsionssteifigkeit, m = Masse, J = Massenträgheitsmoment$ 

## Bohrungsdurchmesser

| Modell   |   |   |   |   |   |   |    |    |    |    |    | d mm |    |    |    |    |    |    |    |    |    |    |    |
|----------|---|---|---|---|---|---|----|----|----|----|----|------|----|----|----|----|----|----|----|----|----|----|----|
|          | 3 | 4 | 5 | 6 | 8 | 9 | 10 | 11 | 12 | 14 | 16 | 18   | 19 | 20 | 22 | 24 | 25 | 30 | 32 | 35 | 40 | 42 | 45 |
| SFC-050D |   |   |   |   |   |   |    |    |    |    |    |      |    | -  | -  | -  |    |    |    |    |    |    |    |
| SFC-055D |   |   |   |   |   |   |    |    |    | -  | -  | -    | -  | -  | -  |    |    | -  |    |    |    |    |    |
| SFC-060D |   |   |   |   |   |   |    |    |    |    |    |      |    |    |    |    |    | -  |    |    |    |    |    |
| SFC-080D |   |   |   |   |   |   |    |    |    |    |    |      |    | -  | -  | -  |    | -  |    | -  |    |    |    |
| SFC-090D |   |   |   |   |   |   |    |    |    |    |    |      |    |    |    |    |    | -  |    | -  | -  |    |    |
| SFC-100D |   |   |   |   |   |   |    |    |    |    |    |      |    |    |    |    |    |    |    | -  | -  |    | -  |

Weitere Bohrungsdurchmesser als dargestellt sind auf Anfrage erhältlich. Bitte beachten Sie unseren Auswahlablauf auf der Seite 7.

## Bestellbeispiel:

## SFC-050D Ø16 Ø20

Servoflex Baugröße 050 doppelkardanische Ausführung, Bohrungen 16 mm (abgesetzte Nabe), 20 mm; Sie erhalten die Servoflex als Typ B

<sup>□</sup> Bei diesen Bohrungsdurchmessern ist die Kupplung mit abgesetzter, massenträgheitsoptimierter Nabe ausgestattet (Typ A);
■ Ist d1 und/oder d2 größer als die mit □ gekennzeichneten Bohrungen, wird die Servoflex einseitig (Typ B) oder beidseitig mit voller Nabe ausgestattet (Typ C)

## Anwendungen/Branchen



#### Wir sprechen Ihre Sprache

Jede Branche hat ihre eigenen Besonderheiten. Das Verstehen dieser ist eine zentrale Aufgabenstellung zur erfolgreichen Umsetzung branchenspezifischer Einsatzfälle. Seit 50 Jahren gibt uns das Lösen unzähliger Einsatzfälle

in den verschiedensten Branchen die Erfahrung und das Know-How, um in Zusammenarbeit mit unseren Kunden die für die jeweilige Applikation optimalste und effizienteste Kupplungslösung zu realisieren.

Ob in Handling- und Automatisierungsanlagen, in der Robotik oder Druckindustrie, in der Verpackungs- und Halbleiterindustrie oder in der Werkzeugindustrie:
Wir sprechen immer Ihre Sprache!

## Für jede Anwendung die optimale Lösung

## Handling- und Automatisierungsanlagen

Montageautomaten sind unverzichtbar in der rationellen Massenproduktion kleiner und kleinster Teile. Typische Montageaufgaben sind z.B. Komponenten für Mobiltelefone, Mikroschalter, Zentralverriegelungen und Regler. Entsprechend der extrem hohen Produktivität dieser Anlagen ist eine absolute Genauigkeit des Antriebssystems gefragt. Die Servoflex arbeiten sowohl in dem präzisen Transportprozess der Bauteile zu den verschiedenen Bearbeitungsstationen als auch in den eigentlichen Bestückungsund Montageprozessen in den jeweiligen Stationen.

Als Zwischenwellenkupplung werden Servoflex in Gantry-Robotern und in Portalrobotern eingesetzt.

#### Verpackungsmaschinen

Servoflex arbeiten in Servosystemen moderner Schlauch- und Flachbeutelmaschinen, die meist als universelle Form-, Füll- und Verschließmaschinen arbeiten.

Pulvrige oder granulierte Produkte werden über verschiedenste, den jeweiligen Produkterfordernissen angepasste Dosiervorrichtungen in thermoplastische Hüllstoffe gefüllt und anschließend heißversiegelt. Ein hochdynamischer, intermittierender Arbeitsprozess

hinsichtlich Packstoffvorzug, automatischer Form- und Füllstationen und Heißversiegelungsstation ist essentiell für die hohe Ausbringungsleistung dieser Anlagen.

#### Druckmaschinen

Servoflex werden aufgrund ihrer technischen Features in Hochgeschwindigkeitsetikettendruckern eingesetzt. Maschinen dieser Art drucken, stanzen und konfektionieren in hoher Geschwindigkeit gebrauchsfertige Etiketten. Dabei kommt es auf ein passgenaues Arbeiten der Druck- und der Stanzstation an.

Die Kombination aus moderner Servotechnologie in Verbindung mit der Servoflex sorgen beim Antrieb der Druck- und der Stanzstation für optimale Abstimmung des registerhaltigen Drucks und dem im intermittierenden Betrieb arbeitenden Stanzvorgang mit einer hohen Ausbringung und einer beträchtlichen Produktivität.

#### Bestückungsanlagen

Chips, Drahtbonds oder anderer Bauelemente auf Leiterplatten werden vor mechanischen Einflüssen oder Umgebungsbedingungen meist vollständig oder teilweise abgedeckt. Dieser Prozess wird Verkapselung genannt.

Verschiedene Abdeckungsgrößen und -formate können in Anlagen

flexibel und mit einer hohen Taktzahl verarbeitet und auf der Leiterplatte bestückt werden. Auf automatisch umrüstbaren Vorrichtung werden die Abdeckungen von vakuumgestützten Pick-and-Place-Greifern entnommen und mit einer hohen Positioniergenauigkeit auf die entsprechenden zu verkapselnden Bauteile gebracht. In diesen hochpräzisen Bestückungsaufgaben spielen die Servoflex in der XY-Achse mit einem Antriebssystem bestehend aus Servomotor und Kugelumlaufspindel mit ihrer Präzision und ihrer geringen Massenträgheit ihre Stärke aus.

#### Werkzeugmaschinen

An das dynamische Verhalten von Vorschubantrieben werden in modernen CNC Werkzeugmaschinen hohe Anforderungen gestellt.

Zum einen ist eine exakte Positionierung der Vorschubbewegung essentiell. Diese geforderte hohe Positioniergenauigkeit setzt eine hohe Steifigkeit der gesamten Antriebseinheit voraus. Die Servoflex unterstützen dieses durch ihre sehr hohe Torsionssteifigkeit und durch ihr spielfreies Arbeiten. Zum anderen ist bei den Vorschubaufgaben hohe Dynamik gefragt, um der hohen Produktivität gerecht zu werden. Servoflex bieten durch ihre massenträgheitsredzierte Bauweise die perfekte Lösung.

Schlauchbeutelmaschinen
Pick-and-Place-Anlagen
Etikettendrucker
Positioniereinheiten
Montageautomaten u.v.m.





## Montagehinweise

Die Servoflex wird im einbaufertigen Zustand geliefert. Zu unserer Bohrung empfehlen wir auf der Kundenseite die Wellenpassung h7.

- 1. Bitte stellen Sie sicher, dass sich die jeweiligen Klemmschrauben der Kupplung im gelösten Zustand befinden. Befreien Sie die Bohrungen von eventuellen Verschmutzungen wie Staub oder Öle.
- 2. Schieben Sie die Servoflex auf den Motorwellenstumpf. Vermeiden Sie hierbei bitte das Ausüben unnötiger Kräfte auf die Kupplung. Verfahren Sie anschließend identisch bei dem Aufschieben auf die zweite Welle. Stellen Sie nun bitte sicher, dass sich die Servoflex sowohl in axialer Richtung als auch in Drehrichtung leichtgängig bewegen lässt und sich in einem unbelasteten Zustand befindet (Abbildung 1).

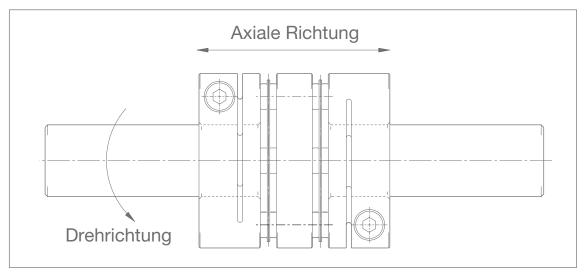



Abbildung 1

3. Bitte stellen Sie zusätzlich sicher, dass die beiden Wellenstümpfe in den vollen Nabenbereich L<sub>1</sub> (Abbildung 2) hineinragen (Werte hierzu entnehmen Sie bitte den jeweiligen Tabellen auf den Seiten 8-11).

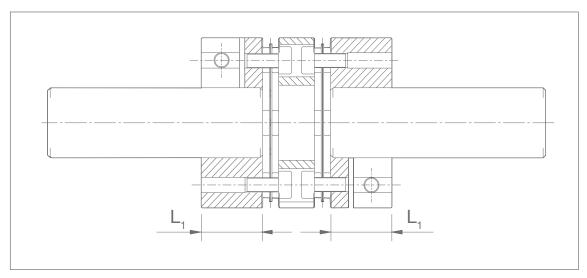



Abbildung 2

**4.** Bei korrekter Position sind die Befestigungsschrauben der Naben mit ihrem vollen Anzugsmoment anzuziehen (Werte entnehmen Sie bitte der jeweiligen Tabelle).



# Übersicht Produktprogramm








Katalog Controlflex



Katalog Semiflex



Katalog Schmidt-Kupplung



Katalog Servoflex



Katalog Loewe GK



Katalog Omniflex



Branchenübersicht

## Kontakt



Antriebstechnik
RINGSPANN AG

Getriebetechnik

Sumpfstrasse 7 CH-6300 Zug Messtechnik

Telefon +41 41 748 09 00 Telefax +41 41 748 09 09 Spanntechnik

www.ringspann.ch info@ringspann.ch