

Wir über uns

Langjährige Erfahrung

Seit nahezu 50 Jahren begleiten wir Maschinenbauer als Partner für kompakte Kupplungssysteme. Durch diese Erfahrung in der Antriebstechnik besitzen wir ein umfangreiches Know-How in vielen Branchen, denn wir kennen und verstehen die unterschiedlichsten Anwendungen und können Sie so optimal unterstützen.

sichere Wahl. Egal, ob es sich um ein Serienprodukt, eine auf eine Branche angepasste Kupplung oder eine speziell für eine Anwendung entwickelte Kupplungslösung handelt.

Produkte mit hoher technischer Funktionalität

Produktprogramm Unser

Unsere Produkte sind immer eine fasst torsionssteife Kupplungen, die sich durch eine Kompaktheit und durch ihre hohe Funktionalität auszeichnen. Ihre technischen bieten Alleinstellungsmerkmale dem technischen Anwender eine Vielzahl von praxisrelevanten Vorteilen. Namhafte OEMs aus allen Bereichen des Maschinenbaus zählen zu unseren Partnern.

Branchenspezifische Ausführungen

Wir verstehen die Anwendungen in den unterschiedlichsten Branchen und konzipieren hierauf abgestimmte Kupplungsausführungen. Egal ob in der Lebensmittelindustrie, Vakuumindustrie, in der Verpackungs- oder Druckindustrie oder in der Sensorik oder Medizintechnik – wir fühlen uns überall zuhause.

Optimierung Ihres Antriebs

Eine enge Zusammenarbeit mit unseren Kunden bei der Konzeption und Umsetzung eines Projekts resultiert in exakt auf anwendungsspezifische Anforderungen angepasste Kupplungslösungen. Umfassende Beratung, FEM-Analysen, Abstimmung von Prototypen und Anfertigung von Rapid Prototyping Modellen sowie Bestätigung der errechneten

Konstruktionsdaten auf modernen Prüfständen – all dies sorgt für die Optimierung Ihres Antriebsstranges.

Kontinuierliche Entwicklung

Ihre Wünsche sind unser Ansporn – neue Impulse aus dem Markt fließen bei uns in permanente Weiterentwicklungen unserer Produkte ein.

Individuelle Beratung
Kundennähe
Abgestimmte Kupplungssysteme
Branchen Know-How
Optimierung des Antriebs

Inhalt

Einführung	5
Technik Gleichlauf auch bei hoher Verlagerung Rückstellkräftefreiheit Torsionssteif und hohe Drehmomentübertrag Hohe Verlagerung bei Kompaktheit	6 - 7 gung
Baureihen/Material	8
Nabenformen/Kombinationen	9
Auswahlablauf	10 - 11
Technische Daten Standard/Power Plus/Offset Plus	12 - 17
Montagehinweise	18 - 19
Nachschmierfristen	20
Kundenspezifische Kupplungsausführungen	21
Branchen/Anwendungen Holzbearbeitung Verpackungsmaschinen Umformtechnik Papiermaschinen Druckmaschinen u.v.m.	22 - 23

Die Kupplung für den extremen Versatz

Die Schmidt-Kupplung ist eine kurz bauende, drehsteife Leistungskupplung für großen veränderlichen Radialversatz. Die Winkelsynchronisation der verbundenen Wellen bleibt dabei immer konstant. Durch die modulare Bauweise können Drehmoment und Versatz hervorragend an die Bedürfnisse angepasst werden. Die Schmidt-Kupplung ist in einer Vielzahl von Anwendungen im Einsatz, z.B. in Druckmaschinen, Profilieranlagen, Verpackungsmaschinen und Beschichtungsanlagen.

Technik

Großer Versatz bei absoluter len. Der Wellenversatz kann so-Winkelsynchronisation wohl in Ruhe als auch im Betrieb

Die Schmidt-Kupplung ist eine kompakt bauende Kupplung zur präzisen Drehmomentübertragung von radial extrem versetzten Wellen. Der Wellenversatz kann sowohl in Ruhe als auch im Betrieb unter Last beliebig innerhalb des jeweils zulässigen Ausschwenkbereiches verändert werden. Dabei ist unabhängig von der Höhe des Wellenversatzes eine permanent winkelsynchrone Übertragung gewährleistet. An- zu Antrieb arbeiten permanent im Gleichlauf ohne Phasenverschiebung.

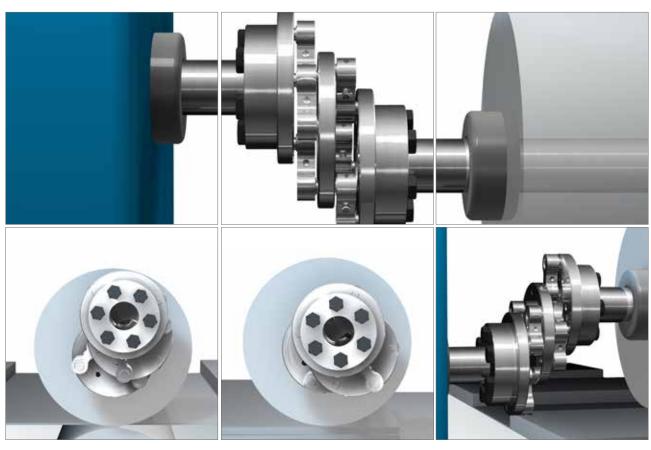


Bild 1, 2: Anwendung im Walzenantrieb bspw. Beschichtungswalze; Unterschiedliche Materialstärken werden bearbeitet. Die Schmidt-Kupplung ermöglicht den verän-

derlichen funktionalen Wellenversatzes bei dem Bearbeitungsvorgang während des Betriebes im permanenten Gleichlauf. Bild 3: Abschwenken der Walze ohne

Stoppen der Maschine. Hierdurch wird ein Walzenwechsel während des Betriebes ermöglicht. Kostenintensives Anfahren der Maschine entfällt hierdurch.

Präzise und kompakt

Die Kupplung arbeitet mit drei Scheiben und zwei Gliederebenen. Dieses gewährleistet Kompaktheit und ein torsionssteifes Arbeiten. Die zusätzliche Verwendung von Präzisionsnadellagern in den Kupplungsgliedern sichert ein äu-

Berst geringes Drehspiel und damit eine präzise Drehmomentübertragung.

Dynamisch ausgeglichen

Die Schmidt-Kupplung ist ein dynamisch ausgeglichenes System. Radiale Schwingungen werden durch die Kupplung absorbiert.

Reaktionskräftefrei

Wellenversätze kompensiert die Schmidt-Kupplung rückstellkräftefrei und somit ohne Lagerbelastungen.

Torsionssteif und hohe Drehmomentübertragung

Die Bauteile der Schmidt-Kupplung sind aus Qualitätsstahl mit hoher Zugfestigkeit und Einsatz-Vergütungsstahl gefertigt. Sie bietet als Ganzmetallkupplung eine hohe Torsionssteifigkeit und ist auf eine hohe Drehmomentübertragung ausgelegt.

Unterschiedlichste Nabenformen, beliebig kombinierbar

Das Programm bietet 3 verschiedene kraft- und formschlüssige Nabenausführungen. Diese lassen sich je Baugröße beliebig kombinieren und damit exakt auf die jeweilige Anforderung individuell anpassen.

Baureihen

Standard S

Eine Symbiose aus Leistung, kompakter Bauform und großzügigen Versatzmöglichkeiten.

Kupplungen der Serie besitzen 3 Kupplungsglieder je Ebene. Bei den meisten Kupplungsgrößen bieten wir für alternative Versatzwerte 2 unterschiedliche Längen dieser Kupplungsglieder an. Kupplungen der Serie Standard bieten eine Symbiose aus Versatzkapazität, Drehmomentübertragung und kompakter Bauform.

Die Serie Standard ist für Nenndrehmomente bis 2.875 Nm und für einen Radialversatz bis zu 115 mm erhältlich.

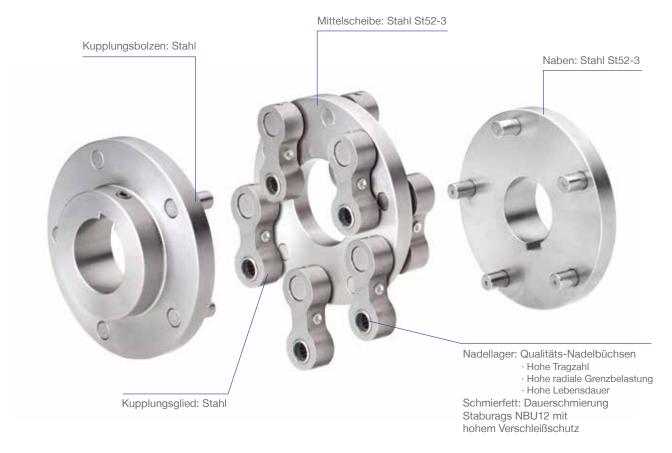
Power Plus P

Bietet ein Plus an Drehmomentübertragung in kompakter Bauform für restriktive Einbauräume.

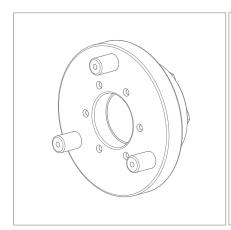
Kupplungen der Serie Power Plus besitzen 4 oder mehr Kupplungsglieder je Ebene. Diese erhöhte Anzahl an Kupplungsglieder gewährleistet ein Plus an Drehmomentübertragung unter Beibehaltung abmessungstechnischer Daten verglichen zur Serie Standard – besonders geeignet für Anwendungen, bei denen sehr hohe Drehmomente in restriktiven Einbauverhältnissen übertragen werden müssen.

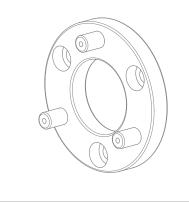
Die Serie Power Plus ist für Nenndrehmomente bis 6.610 Nm und für einen Radialversatz bis zu 115 mm erhältlich.

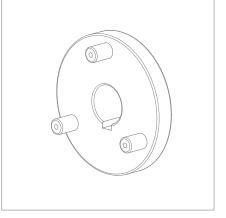
Offset Plus V


Bietet ein Plus an Versatzkapazität in kompakter Bauform.

Kupplungen der Serie Offset Plus besitzen meist 3 extralange Kupplungsglieder je Ebene. Diese extralangen Kupplungsglieder gewährleistet ein Plus an Versatzkapazität unter Beibehaltung abmessungstechnischer Daten verglichen zur Serie Standard – besonders geeignet für Anwendungen, bei denen sehr hohe Versatzanforderungen in restriktiven Einbauverhältnissen vorliegen.


Die Serie Offset Plus ist für Nenndrehmomente bis 3.830 Nm und für einen Radialversatz bis zu 275 mm erhältlich.


Material


Nabenformen/Kombinationen

Nabenform 3: Spannnaben Spielfreie Welle-Nabe-Verbindung, hohe Reibmomente

Nabenform 5: Zum Anflanschen kurzbauende Integration in kundenspezifische Anbauteile

Nabenform 6: Nabe Formschlüssige Drehmomentübertragung mit Passfedernut und Gewindestift

Unterschiedliche Nabenformen, beliebig kombinierbar

Alle die hier aufgeführten kraftund formschlüssigen Nabenausführungen lassen sich je Baugröße beliebig kombinieren und damit exakt auf Ihre jeweiligen Anforderung individuell anpassen. D.h. Sie können z.B. antriebsseitig eine Spannnabenausführung wählen (Nabenform 3) und abtriebsseitig eine Anschlussscheibe zum Anflanschen (Nabenform 5), zur direkten Verschraubung mit ihrem Anbauteil.

Weitere, hier nicht aufgeführte

kundenspezifische Nabenausführungen sind optional verfügbar. Beispiele hierzu können Sie auf den Seiten 20 "Kundenspezifische Kupplungsausführungen" finden. Unsere Anwendungstechniker beraten Sie hierzu gerne.

Radialversatz

Die Schmidt-Kupplung kann innerhalb des jeweiligen Ausschwenkbereiches radial versetzt werden. Bitte beachten Sie die in den technischen Tabellen jeweils angegebenen Werte für den maximal zulässigen Versatz, den maximalen Verstellweg und den minimal erforderlichen Versatz. Durch Einhaltung dieser Werte wird gewährleistet, dass die Kupplung nicht in unzulässiger Fluchtstellung der Wellen sowie in Strecklage läuft.

Minimal erforderlicher Radialversatz $\Delta K_{r_{min}}$ Die Kupplung darf nicht in Fluchtstellung $K_r=0$ arbeiten. In Fluchtstellung würde die Mittelscheibe keine eindeutige Lage im Raum besitzen, sondern würde zu einer Eigenbewegung angeregt werden.

Für die beiden zu verbindenden Wellen ist aus diesem Grunde zwingend ein minimal erforderlicher Radialversatz $\Delta K_{r_{min}}$ vorzusehen.

Hierzu ist die Abtriebswelle horizontal (Abbildung 1) oder alternativ vertikal um diesen Mindestversatz zu versetzen.

Die untere Abbildung verdeutlicht die Einbausituation der Kupplung bei Wahl von ΔK_{rmin} in seitlicher, horizontaler Richtung. Die Mittelscheibe kann dabei oben (Abbildung 2a) oder unten (Abbildung 2b) liegen.

Den jeweiligen Wert des minimal erforderlichen Radialversatzes $\Delta K_{r_{min}}$ einer Kupplungsgröße entnehmen Sie bitte den technischen Daten.

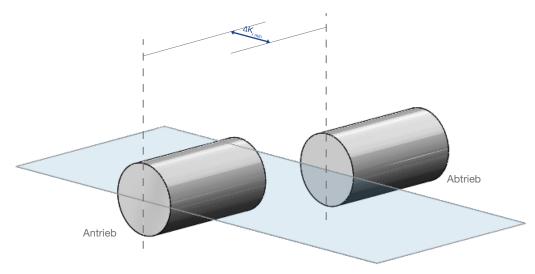


Abbildung 1

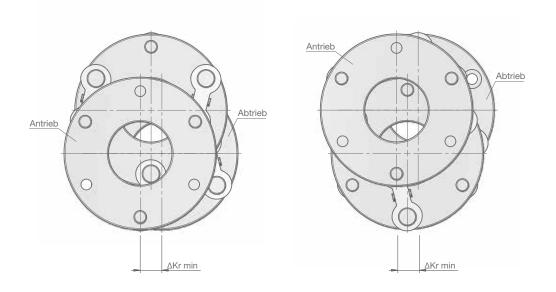


Abbildung 2a

Abbildung 2b

Maximal zulässiger Radialversatz AK,

Die Schmidt-Kupplung ist eine kompakt bauende Kupplung zur präzisen Drehmomentübertragung von radial extrem versetzten Wellen. Dabei ist die Höhe des maximal zulässigen Radialversatzes abhängig von der Länge/Stichmaß der in einer jeweiligen Kupplungsgröße verwendeten Kupplungsglieder.

Der maximal zulässige Radialversatz ergibt sich aus der Summe $\Delta K_{r,min}$ und dem Verstellbereich (Abbildung 3). Den jeweiligen Wert des maximal zulässigen Radialversatzes ΔK_r einer Kupplungsgröße entnehmen Sie bitte den technischen Daten.

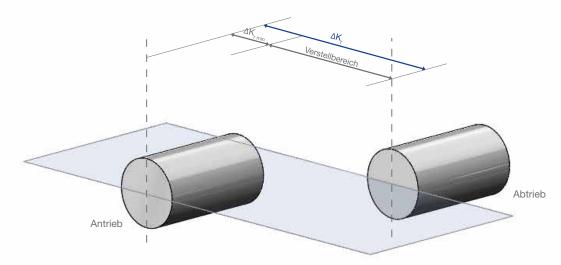


Abbildung 3

Abbildung 4 zeigt den Weg der Mittelscheibe der Schmidt-Kupplung bei Verstellbewegungen beginnend bei $\Delta K_{r, min}$ bis ΔK_r . Die Mittelscheibe bewegt sich hierbei auf einem durch die Länge/Stichmaßes der Kupplungsglieder definierten Kreisabschnitt und besitzt somit immer eine eindeutige Position.

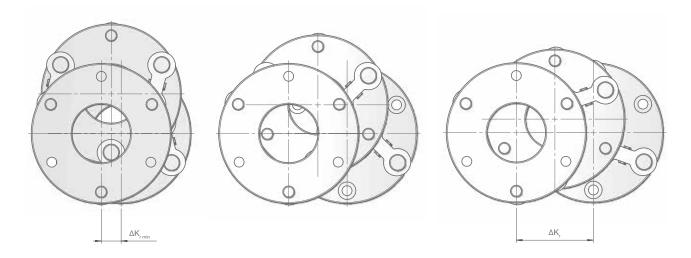
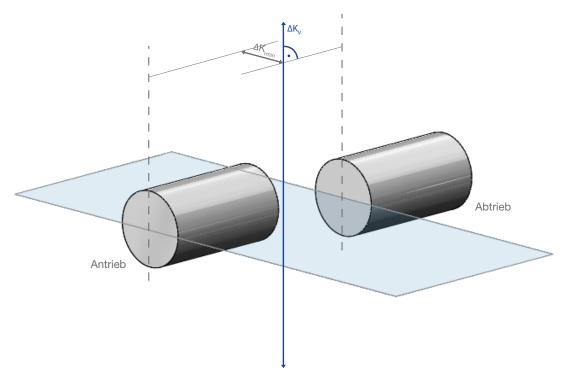
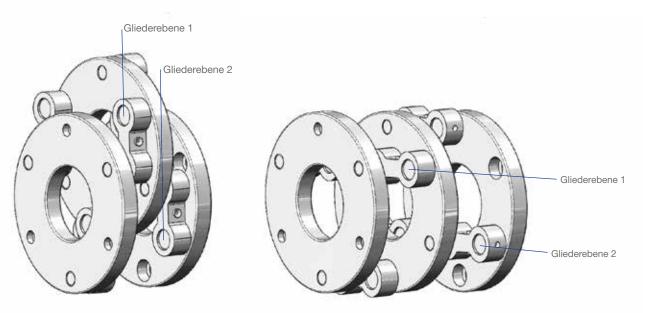



Abbildung 4

Maximal zulässiger Verstellweg ΔK_v

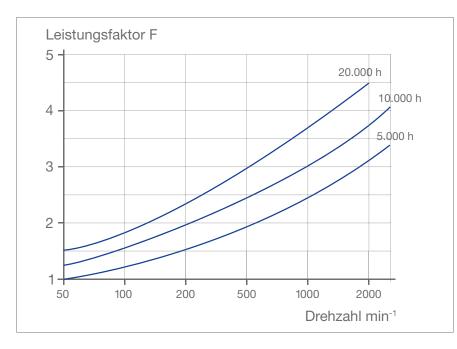

Zwei Einbausituationen sind nicht zulässig

Unzulässige Fluchtstellung

Die Kupplung darf nicht in Fluchtstellung $K_r=0$ arbeiten (erkennbar dadurch, dass die Kupplungsglieder der Gliederebene 1 parallel mit den Kupplungsgliedern der Ebene 2 sind). In Fluchtstellung würde die Mittelscheibe keine eindeutige Lage im Raum besitzen, sondern würde zu einer Eigenbewegung angeregt werden. Aus diesem Grunde ist für jede Schmidt-Kupplung der bereits erwähnte minimal erforderliche Raidalversatz vorzusehen (siehe Ausführungen auf Seite 11)

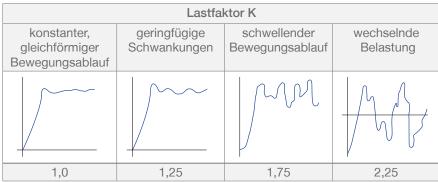
Unzulässige Strecklage

Die Kupplung darf nicht in Strecklage arbeiten (erkennbar dadurch, dass die Kupplungsglieder der Gliederebene 1 parallel mit den Kupplungsgliedern der Ebene 2 sind).


Auswahlablauf

Die Auswahl der Schmidt-Kupplung wird durch die verschiedenen Leistungsparameter bestimmt. Dazu gehören Drehmoment, Drehzahl und auftretender Versatz. Die Einflüsse dieser Parameter werden im Folgenden beschrieben:

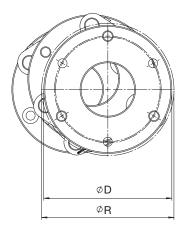
Auswahl nach dem Drehmoment


Errechnung des Dimensionierungsmoments T_D : Zur Errechnung des Dimensionierungsmoments multiplizieren Sie bitte Ihr Antriebsmoment T_A mit dem entsprechenden Leistungsfaktor f und dem zu erwartenden Lastfaktor K.

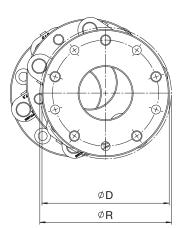
$$T_D = T_A \times f \times K$$

Leistungsfaktor f entnehmen Sie bitte dem Diagramm 1. Dazu wählen Sie bitte die zu erwartende Betriebsdrehzahl Ihrer Anwendung kombiniert mit der gewünschten Lebensdauer in h*.

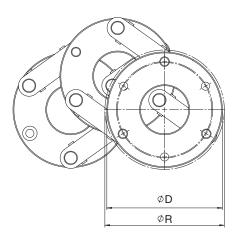
Stoßfaktor entnehmen Sie bitte Diagramm 2.


Wählen Sie eine Kupplung, deren Nenndrehmoment T_{KN} größer ist als das errechnete Dimensionierungsmoment

$$T_{KN} > T_{D}$$

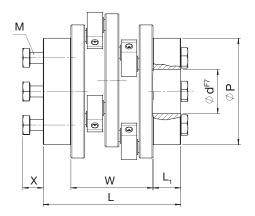

Stellen Sie sicher, dass das Maximaldrehmoment der Kupplung $T_{\rm kmax}$ nicht überschritten wird *Nominelle Lebensdauer - die Lebensdauerempfehlung der Kupplungsnadellager, ausgedrückt in der Anzahl der Betriebsstunden, die ein Lager absolvieren kann, bevor die ersten Anzeichen einer Werkstoffermüdung auftreten.

Baureihen

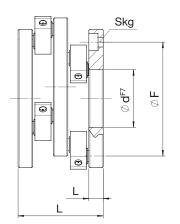

Standard S

Power Plus P

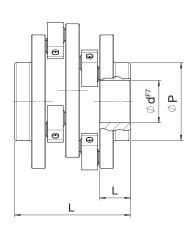
Offset Plus V



Modell					Te	chnische Da	ten				
	T _{KN}	T _{Kmax}	K _v	K _{r min}	K _r	K _a	K _w	min ⁻¹	C _T	D	R
	Nm	Nm	mm	mm	mm	mm	۰		kNm/rad	mm	mm
S 35	35	65	45	6	23	1	0,8	3.100	7	50	52
S 40	45	85	95	13	50	1	0,8	1.900	10	60	62
S 45	45	85	45	6	23	1	0,8	2.800	10	60	62
P 45	45	90	45	6	23	1	0,5	3.100	10	50	52
P 60	60	115	45	6	23	1	0,5	2.800	13	60	62
V 65	65	126	151	21	79	1	0,5	1.300	14	80	84
P 110	110	210	95	13	50	1	0,5	1.600	24	80	84
P 115	110	210	45	6	23	1	0,5	2.400	24	80	84
S 115	110	210	64	9	34	1	0,8	3.500	24	70	74
S 150	150	290	126	17	66	1	0,8	2.200	33	90	94
						-					
S 155	150	290	64	9	34	1	0,8	3.100	33	90	94
P 200	200	385	64	9	34	1	0,5	3.100	44	90	94
S 210	210	410	126	17	66	1	0,8	1.900	47	120	124
S 215	210	410	64	9	34	1	0,8	2.700	47	120	124
V 210	210	410	216	30	114	1	0,5	1.500	47	120	124
P 250	250	490	64	9	34	1	0,5	3.100	56	90	94
P 280	280	550	126	17	66	1	0,5	1.900	63	120	124
P 285	280	550	64	9	34	1	0,5	2.700	63	120	124
V 290	290	620	360	50	190	1	0,5	1.000	71	170	170
P 350	350	690	126	17	66	1	0,5	1.900	79	120	124
P 355	350	690	64	9	34	1	0,5	2.700	79	120	124


 T_{KN} : Nenndrehmoment, T_{Kman} : Maximales Drehmoment, \min : maximal zulässige Drehzahl, K_{C} : maximal zulässiger Verstellweg, K_{C} : maximal zulässiger Radialversatz, K_{min} : minimal erforderlicher Radialversatz, K_{min} : maximal zulässiger Axialversatz, K_{min} : maximal zulässiger Winkelversatz, C_{C} : Massenträgheitsmoment

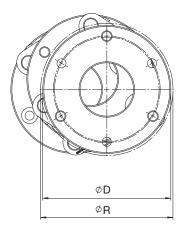
Nabenformen


33: Spannnabe

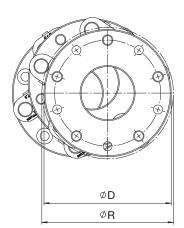
55: zum Anflanschen

66: Nabe

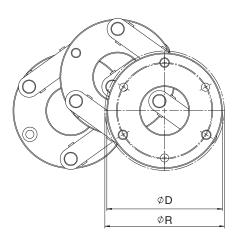
Modell	33: Spannnabe											
	J	m	L	W	Х	L1	Р	d _{max}				
	kg cm²	kg	mm	mm	mm	mm	mm	mm				
S 35	2,1	0,7	74	44	9	15	41	16				
S 40	4,1	1	74	44	9	15	47	20				
S 45	4	0,9	74	44	9	15	47	20				
P 45	2,7	0,8	74	44	9	15	47	16				
P 60	4,2	1	74	44	9	15	47	16				
V 65	30,2	1,7	82	44	11	19	50	25				
P 110	29,2	1,6	82	44	10	19	50	25				
P 115	28,9	1,5	82	44	10	19	50	25				
S 115	13	2,2	108	74	14	17	60	20				
S 150	34,8	3,3	116	74	15	21	76	30				
S 155	29,1	2,9	116	74	15	21	76	30				
P 200	36,7	3,5	116	74	15	21	76	30				
S 210	105,5	5,9	124	74	17	25	96	40				
S 215	102,6	5,8	124	74	17	25	96	40				
V 210	92	5,2	116	74	17	21	76	30				
P 250	33,9	3,3	112	74	17	19	66	25				
P 280	110,2	6,1	124	74	17	25	96	40				
P 285	106,4	5,9	124	74	17	25	96	40				
V 290	570,8	12,6	124	74	17	25	96	40				
P 350	115,8	6,3	124	74	17	25	96	40				
P 355	110,9	6,1	124	74	17	25	96	40				


55: zum Anflanschen								
J	m	L	L1	F	Skg			
kg cm²	kg	mm	mm	mm				
1,5	0,4	44	8	35	3xM6			
3,1	0,6	44	8	45	3xM6			
2,8	0,5	44	8	45	3xM6			
1,8	0,4	44	8	35	4xM6			
3,1	0,6	44	8	45	4xM6			
8,9	1,1	48	8	67	3xM6			
9,1	0,9	44	8	67	5xM6			
8,8	1,8	44	8	67	5xM6			
7,5	1,1	74	12,5	48	3xM8			
24	1,9	74	12,5	70	3xM8			
21,5	1,7	74	12,5	70	3xM8			
23	1,8	74	12,5	70	4xM8			
61	2,9	74	12,5	100	3xM8			
60	2,8	74	12,5	100	3xM8			
78	3,7	74	12,5	100	3xM8			
25	2	74	12,5	71	5xM8			
63	3	74	12,5	98	4xM8			
61	2,9	74	12,5	98	4xM8			
285	7	74	12,5	148	3xM8			
65	3,2	74	12,5	100	5xM8			
63	3	74	12,5	100	5xM8			

				66: N	abe		
		J	m	L	L1	Р	d _{max}
		kg cm²	kg	mm	mm	mm	mm
ô		2,2	0,6	60	16	50	25
6		4,2	0,8	60	16	60	30
ô		4,4	0,9	60	16	60	30
6		2,3	0,6	60	16	50	25
6		4,3	0,8	60	16	60	36
6		12,6	1,4	72	20	50	30
6		12,3	1,6	78	25	50	30
6		11,7	1,4	78	25	50	30
	1						
8		13	1,9	94	22,5	70	30
В		27,3	2,4	104	27,5	56	36
В		25,9	2,3	104	27,5	56	36
8		31,5	3,2	104	27,5	56	36
3		77,9	4,1	104	27,5	70	40
3		75	4	104	27,5	70	40
3		86	4,4	104	27,5	70	40
3		29,9	2,6	104	27,5	56	36
В		82,6	4,3	104	27,5	70	40
В		78,8	4,1	104	27,5	70	40
В		339,3	9,2	104	37,5	90	50
В		88,2	4,5	104	27,5	70	40
В		83,3	4,3	104	27,5	70	40

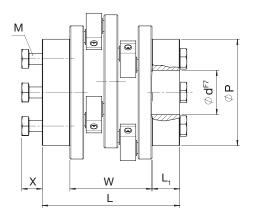

J: Trägheitsmoment, m: Gewicht, L: Kupplungslänge, X: Montageraum, W: Kupplungsbasis, K: Nabenlänge, Skg: Anzahl x Größe der Senkungen, F: Verschraubungsteilkreis

Baureihen

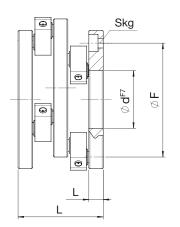

Standard S

Power Plus P

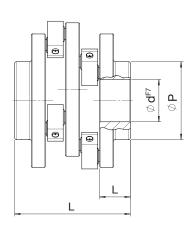
Offset Plus V



Modell					Te	chnische Da	iten				
	T _{KN}	T _{Kmax}	K,	K _{r min}	K,	K	K _w	min ⁻¹	C _T	D	R
	Nm	Nm	mm	mm	mm	mm	۰		kNm/rad	mm	mm
S 285	280	550	100	14	53	1	0,5	2.500	63	100	100
S 360	360	710	162	22	85	1	0,5	1.800	81	120	120
S 365	360	710	100	14	53	1	0,5	2.300	81	120	120
S 440	440	865	162	22	85	1	0,5	1.700	99	140	140
S 445	440	865	100	14	53	1	0,5	2.100	99	140	140
V 440	440	865	216	30	114	1	0,5	1.500	99	140	140
P 480	480	945	100	14	53	1	0,5	2.300	108	120	120
P 590	590	1.155	162	22	85	1	0,5	1.700	132	140	140
P 595	590	1.155	100	14	53	1	0,5	2.100	132	140	140
V 680	680	1.340	396	55	209	1	0,3	900	154	200	200
P 700	700	1.365	162	22	85	1	0,5	1.600	156	160	160
P 705	700	1.365	100	14	53	1	0,5	2.000	156	160	160
V 700	700	1.365	216	30	114	1	0,5	1.400	156	160	160
S 630	630	1.240	162	22	85	1	0,5	1.500	142	140	143
S 635	630	1.240	122	17	64	1	0,5	1.700	142	140	143
S 760	760	1.485	162	22	85	1	0,5	1.400	170	160	163
S 765	760	1.485	122	17	64	1	0,5	1.600	170	160	163
S 950	950	1.820	162	22	85	1	0,5	1.300	209	190	190
S 955	950	1.820	122	17	64	1	0,5	1.500	209	190	190
V 950	950	1.820	270	37	142	1	0,5	1.000	209	190	190
V 955	950	1.820	216	30	114	1	0,5	1.100	209	190	190
P 1010	1.010	1.980	162	22	85	1	0,5	1.400	227	160	164
P 1015	1.010	1.980	122	17	64	1	0,5	1.600	227	160	164
V 1200	1.200	2.350	432	60	228	1	0,3	700	269	230	230
P 1580	1.580	3.095	162	22	85	1	0,5	1.300	355	190	193
P 1585	1.580	3.095	122	17	64	1	0,5	1.500	355	190	193


 T_{KN} : Nenndrehmoment, T_{Kmax} : Maximales Drehmoment, min'l: maximal zulässige Drehzahl, K_{v} : maximal zulässiger Verstellweg, K_{c} : maximal zulässiger Radialversatz, K_{min} : minimal erforderlicher Radialversatz, K_{a} : maximal zulässiger Axialversatz, K_{w} : maximal zulässiger Winkelversatz, C_{t} : Massenträgheitsmoment

Nabenformen


33: Spannnabe

66: Nabe

Spezifikationen

P 1010

P 1015

V 1200

P 1580

P 1585

570

560

2.240

1.120

1.100

18

17,5

32,5

24,5

24

194

194

194

202

202

23 | 30 | 112

23 | 30

34 120

134

134

134 | 23 | 30 | 115

134

134 | 24 | 34 | 120

Modell	33: Spannnabe											
	J	m	L	W	Х	L1	Р	d _{max}				
	kg cm²	kg	mm	mm	mm	mm	mm	mm				
S 285	84	6,2	151	101	17	25	96	40				
S 360	141	7,7	151	101	17	25	96	40				
S 365	135	7,4	151	101	17	25	96	40				
S 440	225	9,4	151	101	17	25	96	40				
S 445	216	9,1	151	101	17	25	96	40				
V 440	237	9,8	151	101	17	25	96	40				
P 480	-	-	-	-	-	-	-	-				
P 590	239	9,8	151	101	17	25	96	40				
P 595	227	9,5	151	101	17	25	96	40				
V 680	1.110	20	151	101	17	25	96	40				
P 700	415	13,2	161	101	23	30	115	50				
P 705	399	12,8	161	101	23	30	115	50				
V 700	391	12,2	151	101	17	25	96	40				
S 630	370	14,5	194	134	23	30	112	50				
S 635	365	14,5	194	134	23	30	112	50				
S 760	535	17	184	134	17	25	96	40				
S 765	495	16	184	134	17	25	96	40				
S 950	1.020	22,5	202	134	24	34	120	60				
S 955	1.010	22,5	202	134	24	34	120	60				
V 950	1.015	22,5	194	134	23	30	115	50				
V 955	945	21,5	194	134	23	30	115	50				

J	m	L	L1	F	Skg
kg cm²	kg	mm	mm	mm	
52	3,6	101	17	70	3xM12
107	5,1	101	17	90	3xM12
95	4,5	101	17	90	3xM12
175	6,3	101	17	110	3xM12
160	5,8	101	17	110	3xM12
187	6,8	101	17	110	3xM12
105	5	101	17	90	4xM12
187	6,8	101	17	110	4xM12
175	6,3	101	17	110	4xM12
790	13	101	17	170	3xM12
304	8	101	17	130	4xM12
295	7,4	101	17	130	4xM12
313	8,6	101	17	130	4xM12
285	10	134	26	100	3xM16
275	9,8	134	26	100	3xM16
460	12,5	134	26	120	3xM16
450	12,4	134	26	120	3xM16
865	17	134	26	150	3xM16
855	16,5	134	26	150	3xM16
930	18	134	26	150	3xM16
875	17	134	26	150	3xM16
480	13,2	134	26	120	4xM16
475	13	134	26	120	4xM16

134 26

134 | 26 | 150

134 26

190

150

3xM16

5xM16

5xM16

55: zum Anflanschen

		66: N	abe		
J	m	L	L1	Р	d _{max}
kg cm ²	kg	mm	mm	mm	mm
54	4,2	143	38	53	36
115	6	143	38	70	45
109	5,7	143	38	70	45
205	8,4	143	38	80	50
194	7,5	143	38	80	50
215	8,2	143	38	80	50
117	6,1	143	38	70	45
217	8,3	143	38	80	50
205	7,9	143	38	80	50
1.090	19	151	42	80	50
348	10,2	151	42	80	50
331	9,9	151	42	80	50
371	10,8	151	42	80	50
295	11,5	162	40	77	50
290	10	162	40	77	50
475	14	170	44	90	60
465	13,5	170	44	90	60
970	20	192	55	110	70
955	20	192	55	110	70
985	20,5	192	55	110	70
915	19	192	55	110	70
505	14,5	170	44	90	60
495	14	170	44	90	60
2.235	30,5	202	60	120	80
1.065	22	192	55	110	70
1.045	21,5	192	55	110	70

J: Trägheitsmoment, m: Gewicht, L: Kupplungslänge, X: Montageraum, W: Kupplungsbasis, K: Nabenlänge, Skg: Anzahl x Größe der Senkungen, F: Verschraubungsteilkreis

18

17,5

2.040

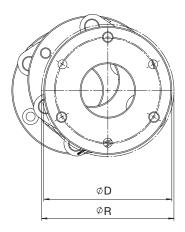
920

910

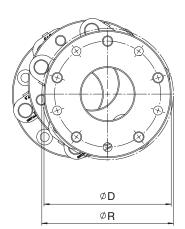
50

50

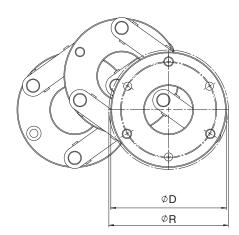
50


60

60

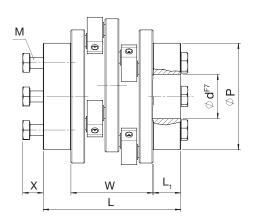

112

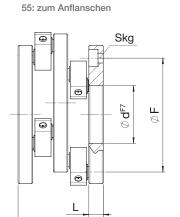
Baureihen

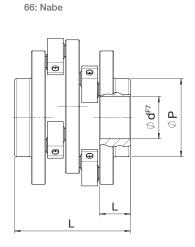

Standard S

Power Plus P

Offset Plus V




Modell		Technische Daten											
	T _{KN}	T _{Kmax}	K _v	K _{r min}	K _r	K _a	K _w	min ⁻¹	C _T	D	R		
	Nm	Nm	mm	mm	mm	mm	٥		kNm/rad	mm	mm		
S 1130	1.130	2.200	180	25	95	1	0,5	1.200	252	160	164		
S 1135	1.130	2.200	129	18	68	1	0,5	1.500	252	160	164		
S 1320	1.320	2.580	180	25	95	1	0,5	1.200	296	180	184		
S 1325	1.320	2.580	129	18	68	1	0,5	1.400	296	180	184		
V 1320	1.320	2.580	234	32	123	1	0,5	1.000	296	180	184		
S 1520	1.520	2.965	180	25	95	1	0,5	1.100	340	200	204		
S 1525	1.520	2.965	129	18	68	1	0,5	1.300	340	200	204		
V 1520	1.520	2.965	320	44	169	1	0,5	800	340	200	204		
V 1525	1.520	2.965	234	32	123	1	0,5	1.000	340	200	204		
V 2100	2.100	4.110	504	70	266	1	0,3	600	471	260	264		
S 2160	2.160	4.220	219	30	115	2	0,3	1.000	484	200	200		
S 2165	2.160	4.220	162	22	85	2	0,3	1.200	484	200	200		
V 2160	2.160	4.220	270	37	142	2	0,3	900	484	200	200		
S 2870	2.875	5.625	219	30	115	2	0,3	900	645	250	250		
S 2875	2.875	5.625	162	22	85	2	0,3	1.000	645	250	250		
V 2875	2.875	5.625	270	37	142	2	0,3	800	645	250	250		
P 2880	2.880	5.620	162	22	85	2	0,3	1.200	644	200	200		
V 3300	3.300	6.470	522	72	275	2	0,2	500	742	280	280		
P 3830	3.830	7.500	219	30	115	2	0,3	900	860	250	250		
P 3835	3.830	7.500	162	22	85	2	0,3	1.000	860	250	250		
V 3840	3.830	7.500	270	37	142	2	0,3	800	860	250	250		
P 4800	4.800	9.380	219	30	115	2	0,3	900	1.075	250	250		
P 4805	4.800	9.380	162	22	85	2	0,3	1.000	1.075	250	250		
P 6610	6.610	12.940	219	30	115	2	0,2	800	1.483	280	280		
P 6615	6.610	12.940	162	22	85	2	0,2	1.000	1.483	280	280		


 $T_{\text{KN}}\text{: Nenndrehmoment, }T_{\text{Kmax}}\text{: Maximales Drehmoment, min-1: maximal zulässige Drehzahl, }K_{\text{v}}\text{: maximal zulässiger Verstellweg, }K_{\text{r}}\text{: maximal zulässiger Radialversatz, }K_{\text{min}}\text{: minimal zulässiger Winkelversatz, }C_{\text{T}}\text{: Massenträgheitsmoment}$

Nabenformen

33: Spannnabe

Modell			3	3: Spar	nnab	Э					55:	zum A	Anflan	schen					66: N	labe		
	J	m	L	W	Х	L1	Р	d _{max}		J	m	L	L1	F	Skg	Ì	J	m	L	L1	Р	d _{max}
	kg cm²	kg	mm	mm	mm	mm	mm	mm		kg cm²	kg	mm	mm	mm			kg cm²	kg	mm	mm	mm	mm
S 1130	620	20	209	155	20	30	115	40		585	16	155	31	115	6xM16		590	18	185	46	80	50
S 1135	590	19	209	155	20	30	115	40		550	15	155	31	115	6xM16		570	17	185	46	80	50
S 1320	1.040	25	223	155	24	34	120	60		885	19	155	31	135	6xM16		950	22	195	51	90	60
S 1325	1.010	25	223	155	24	34	120	60		850	18	155	31	135	6xM16		920	21	195	51	90	60
V 1320	1.080	26	223	155	24	34	120	60		910	20	155	31	135	6xM16		990	23	195	51	90	60
S 1520	1.490	29	235	155	30	40	155	70		1.310	23	155	31	155	6xM16		1.440	27	215	61	110	70
S 1525	1.630	32	235	155	30	40	155	70		1.265	22	155	31	155	6xM16		1.400	26	215	61	110	70
V 1520	1.610	31	223	155	24	34	120	60		1.540	26	155	31	130	6xM16		1.560	29	215	61	110	70
V 1525	1.540	30	223	155	24	34	120	60		1.355	23	155	31	130	6xM16		1.490	28	215	61	110	70
V 2100	3.910	53	235	155	30	40	155	70		4.070	44	155	31	130	6xM16		3.690	47	215	61	120	80
S 2160	1.825	35	264	196	24	34	120	60		1.700	30	196	33	150	6xM20		1.750	32	236	53	110	70
S 2165	1.725	34	264	196	24	34	120	60	ŀ	1.500	26	196	33	150	6xM20		1.675	31	236	53	110	70
V 2160	2.075	40	276	196	30	40	155	70	ŀ	1.850	32	196	33	150	6xM20		1.825	33	236	53	110	70
S 2870	4.400	55	284	196	31	44	170	80	ŀ	3.500	38	196	33	200	6xM20		3.950	46	266	68	120	80
S 2875	4.250	54	284	196	31	44	170	80	ŀ	3.400	37	196	33	200	6xM20		3.800	45	266	68	120	80
V 2875	4.525	56	284	196	31	44	170	80	ľ	3.650	40	196	33	200	6xM20		4.075	47	266	68	120	80
P 2880	2.050	40	276	196	30	40	155	70	Ì	1.600	28	196	33	200	4xM20	Ì	1.800	33	236	53	110	70
V 3300	7.550	74	284	196	31	44	170	80	ľ	6.800	59	196	33	200	6xM20		7.100	65	266	68	120	80
P 3830	4.700	58	276	196	30	40	155	70	Ī	3.750	41	196	33	200	8xM20		4.250	49	266	68	120	80
P 3835	4.250	53	276	196	30	40	155	70	ľ	3.700	41	196	33	200	8xM20		4.050	47	266	68	120	80
V 3840	4.450	53	276	196	30	40	155	70	Ì	4.100	44	196	33	200	8xM20	Ì	4.425	51	266	68	120	80
P 4800	5.000	61	284	196	31	44	170	80	ľ	4.080	45	196	33	200	10xM20	Ì	4.550	52	276	73	120	80
P 4805	4.500	55	284	196	31	44	170	80		4.000	43	196	33	200	10xM20		4.325	50	276	73	120	80
P 6610	7.575	73	296	196	30	50	185	90		8.700	52	196	33	230	12xM20		7.425	70	322	96	150	95
P 6615	7.500	73	296	196	30	50	185	90		5.600	43	196	33	230	12xM20		7.025	67	322	96	150	95

J: Trägheitsmoment, m: Gewicht, L: Kupplungslänge, X: Montageraum, W: Kupplungsbasis, K: Nabenlänge, Skg: Anzahl x Größe der Senkungen, F: Verschraubungsteilkreis

Montagehinweise

Einbau

Maßliste oder eine Zusammenstellungszeichnung einsehen. Einbaumaße, besonders den zulässigen min / max. Radialversatz beachten.

Die Einhaltung dieser Werte ist für den späteren Betrieb wichtig, denn die Kupplung darf während des Betriebes sowohl nicht in Strecklage gefahren werden als auch nicht in die direkte Wellenflucht.

Die Kupplung wird allgemein als komplette Einheit verbaut.

Wird die Kupplung z.B. bei Ausführung mit zwei Naben (Nabenform 6) zunächst auseinandergezogen und in Teilen mit den Wellen verbunden, so ist sorgfältig darauf zu achten, dass die Lager und Laufbolzen nicht verschmutzt oder beschädigt werden. Zusammengefügt wird ohne Gewalt mit Rücksicht auf die Dichtringe und entweichende Luft auf die Soll- Baulänge. Alle Kupplungsglieder einer Ebene müssen eingebaut parallel gerichtet sein. Die zu verbindenden Wellenenden und Bohrungen der Naben müssen sauber, trocken und gratfrei sein. Wellenanschlussmaße (auch die Passfeder betreffende Maße) und Toleranzen kontrollieren. Baulänge nach Liste oder Zeichnung einstellen (im Anlieferzustand wird häufig das Kleinstmaß vorliegen). Längenänderungen, z. B.

durch Wärmeeinwirkung auf lange Wellen, sind in Richtung und Größe zu beachten.

Gegen direktes Einwirken von Hitze, Staub, Sand, Lösungsmitteln usw. ist die Kupplung abzuschirmen, z.B. mit einer Blechverkleidung. Achtung! Die Kupplung kann bei der Demontage ungewollt auseinandergezogen werden. Vorsicht bei Transport, Einbau und Montage. Bitte nicht auseinanderziehen, Teile der Kupplung könnten herabfallen.

Nabenform 3

Ausführungen mit Spannnaben

Die Bohrungen werden in Passung F7 geliefert.

Bei den Spannnabenausführungen wird das Drehmoment reibschlüssig von der Kupplung über den Außenring und den Innenring auf die Welle übertragen. Die Spannschrauben ermöglichen die erforderliche Pressung. Im ungespannten Zustand ist zwischen dem Außenring und der Kupplung ein definierter Spalt vorhanden. Spaltbreite und Schraubenzahl sind so aufeinander abgestimmt, dass nach Überwindung des Spaltes noch eine Spannkraftreserve verbleibt, die dazu genutzt wird, den Außenring fest gegen die Kupplung zu ziehen. Zum Montieren bitte die Welle und die Planfläche an der Kupplung entfetten. Kupplung und Spannsatz erneut locker zusammenschrauben und auf die Welle schieben und Länge einstellen. Spannschrauben der Reihe nach und in mehreren Umläufen anziehen, bis alle Spannschrauben das volle Anzugsmoment (Tabelle) aufweisen. Zur Demontage bitte die Spannschrauben der Reihe nach in mehreren Umläufen lösen.

Тур	Schraubengröße	Anzugsmoment (Nm)
Standard		
S 35, S 40, S 45	M6	12
S 115, S 150, S 155	M8	29
S 210, S 285, S 360, S 365, S 440, S 445, S 760, S 765	M10	58
S 630, S 635, S 950, S 955, S 1130, S 1135, S 1320, S 1325, S 2160, S 2165	M12	100
S 1520, S 1525, S 2870, S 2875	M16	240
	I	T.
Power Plus		
P 45, P 60, P 110, P 115	M6	12
P 200, P 250	M8	29
P 280, P 285, P 350, P 355, P 590, P 595	M10	58
P 700, P 705, P 1010, P 1015, P 1580, P 1585	M12	100
P 2880, P 3340, P 3345, P 3830, P 3835, P 4800, P 4805, P 6610, P 6615	M16	240
Offset Plus		
V 65	M6	12
V 210	M8	29
V 290, V 440, V 680, V 700	M10	58
V 760, V 950, V 955, V 1200, V 1320, V 1520, V 1525	M12	100
V 2100, V 2160, V 2875, V 3300, V 3840	M16	240

Nabenform 5

Ausführungen zum Anflanschen

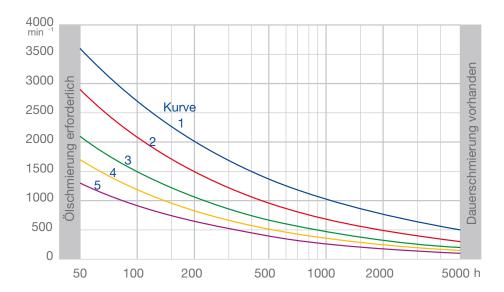
Die Kupplung mit den Anbauflanschen mit den kundenseitig hergestellten Naben oder sonstigen Bauteilen fest verschrauben. Flanschbefestigungsschrauben mittels Drehmomentschlüssel auf das kundenseitig festgelegte Anzugsmoment anziehen.

Nabenform 6

Ausführungen mit Nabe

Um eine spielarme Wellenanbindung zu gewährleisten, ist ein fester Wellensitz erwünscht. Die beim Montieren auftretenden axialen Druckkräfte sind von der Kupplung fern zu halten. Hierzu bietet sich ein axiales Abstützen der Kupplungsteile an.

Alternativ können die Naben separat auf die Wellen aufgezogen und anschließend die Kupplung sauber zusammengeführt werden. Die Bohrungen werden in Passung H7 geliefert.


Wartung

Wir empfehlen die Nachschmierung mit Klüber Fett Staburags Typ NBU 12-300 KP. Üblicherweise sind die Kupplungsglieder mit Trichterschmiernippeln ausgerüstet. Die empfohlenen Nachschmierfristen sind einzuhalten (Abbildung auf nachfolgender Seite). Die funktionswichtigsten Teile der Kupplung sind die Lagerstellen in den Kupplungsgliedern, bzw. die Laufbolzen in den Kupplungsscheiben. Zur schnellen Behebung von Störungen empfiehlt sich die Bevorratung von montagefertigen Kupplungsgliedern als Einbausatz beim Anlagenbetreiber. Beispiel: zu Serie Standard sind zu 2 Ebenen = 6 Stück Kupplungsglieder der entsprechenden Größe erforderlich. Bitte nennen Sie sicherheitshalber den Kupplungstyp mit Artikelnummer.

Der Tausch einzelner Lager oder Glieder vor Ort ist nicht zulässig. Bei Schäden an den Laufbolzen empfehlen wir die Reparatur im Werk. Diese Instandhaltungsarbeiten an der Schmidt-Kupplung dürfen nur von Personal von SCHMIDT- KUPPLUNG GmbH ausgeführt werden. Das Originalfett ist in 400 gr. – Kartuschen.

Für eigene Wartungsarbeiten und/oder das Ausstatten der Schmidt-Kupplung mit nicht original von SCHMIDT-KUPPLUNG GmbH gelieferten Bauteilen übernehmen wir keinerlei Haftung und Gewährleistung.

Nachschmierfristen

Standard						
Kurve 1	Kurve 2	Kurve 3	Kurve 4	Kurve 5		
S 115	S 285	S 630	S 1130	S 2160		
S 150	S 360	S 635	S 1135	S 2165		
S 155	S 365	S 760	S 1320	S 2870		
S 210	S 440	S 765	S 1325	S 2875		
S 215	S 445	S 950	S 1520			
		S 955	S 1525			

Offset Plus						
Kurve 1	Kurve 2	Kurve 3	Kurve 4	Kurve 5		
V 210	V 440	V 760	V 1320	V 2160		
V 290	V 680	V 950	V 1520	V 2875		
	V 700	V 955	V 2100	V 3300		
		V 1200		V 3840		

	Power Plus						
Kurve 1	Kurve 2	Kurve 3	Kurve 4	Kurve 5			
P 200	P 480	P 1010		P 2880			
P 250	P 590	P 1015		P 3830			
P 280	P 595	P 1580		P 3835			
P 285	P 700	P 1585		P 4800			
P 350	P 705	S 950		P 4805			
P 355		S 955		P 6610			
				P 6615			

Die Typen S 35, S 40, S 45, P 60, P 110, P 115 und V 65 besitzen eine Spaltdichtung und keine Nachschmiervorrichtung. Zusatzdichtungen sind optional verfügbar. Bitte kontaktieren Sie und hierzu.

Kundenspezifische Kupplungsausführungen

Zusätzlich zu den Serienprodukten realisiert SCHMIDT-KUPPLUNG branchenspezifische Ausführungen und anwendungsspezifische Kupplungslösungen der Schmidt-Kupplung. Dies sind z.B.:

Besondere Umgebungsbedingungen

Ausführungen mit speziell angepassten Oberflächenbeschichtungen oder komplett aus Edelstahl. Zusätzlich arbeiten in den Kupplungsgliedern angepasste Gleitlager bspw. für den Einsatz im Pharmabereich. Ebenfalls sind Ausführungen für hohe Drehzahlen oder hohe Betriebstemperaturen mit Ölschmierung erhältlich.

Anwendungsspezifische Nabenausführungen

Ausführungen mit geteilter Klemmnabe zur radialen Montage und Demontage bei axial nicht verschiebbaren Wellen. Ebenfalls sind optional Ausführungen z.B. mit Zapfen oder Zahnrad erhältlich.

Höchste Drehmomentanforderungen

Ausführungen mit Rollenlager für den Schwerlastbereich für Drehmomentanforderungen bis zu 250.000 Nm.

Anwendungen/Branchen

Wir sprechen Ihre Sprache

Jede Branche hat ihre eigenen Besonderheiten. Das Verstehen dieser ist eine zentrale Aufgabenstellung zur erfolgreichen Umsetzung branchenspezifischer Einsatzfälle. Seit nahezu 50 Jahren gibt uns das Lösen unzähliger Einsatzfälle

in den verschiedensten Branchen die Erfahrung und das Know-How, um in Zusammenarbeit mit unseren Kunden die für die jeweilige Applikation optimalste und effizienteste Kupplungslösung zu realisieren.

Ob in der Handling- und Fördertechnik, in Werkzeug- und Papiermaschinen, in Rundtakt- und Montageautomaten oder in der Beschichtungstechnologie unter Vakuumbedingungen:

Wir sprechen immer Ihre Sprache!

Für jede Anwendung die optimale Lösung

Holzbearbeitung u. Möbelindustrie

Beim Kaschiervorgang von Platten für die Möbelindustrie ist ein gleichmäßiges und präzises Auftragen des jeweiligen Dekormaterials notwendig.

Die Schmidt-Kupplung bietet den präzisen und kurzbauenden Antrieb der am Kaschiervorgang beteiligten verstellbaren Auftragswalzen, die das Kaschiermittel mit Lack und Leim als schützende oder dekorative Oberfläche auf das Trägermaterial bringt. Der Antrieb von Kantenfräsern findet ebenfalls mit Hilfe der Schmidt-Kupplung statt.

Verpackungsmaschinen

Schmidt-Kupplung werden aufgrund ihrer Präzision, Kompaktheit und der hohen radialen Verlagerungs- und Versatzkapazität in den verschiedensten Verpackungsmaschinen und -prozessen eingesetzt. Sie finden Anwendung beispielsweise im Antrieb von Kartoniermodulen, Faltschachteln und Falzwer-

ken, bei Tiefziehvorrichtungen in Thermoformmaschinen für die Verpackungsindustrie, in Abfüllanlagen oder in VA-Ausführung für Blisterverpackungsmaschinen in der pharmazeutischen Industrie.

Umformtechnik

Schmidt-Kupplung finden Einsatz in Walzenvorschüben aller Art. Sie finden u.a. Anwendung in präzisen und getakteten Arbeitsvorgängen wie beispielsweise im Transport von Blechen, beim Ablängen und Ausstanzen von Produkten sowie in Prägewalzen.

Ebenfalls werden die Präzisions-Kupplungen im Antrieb von Besäumscheren eingesetzt, dem abschließenden Prozess einer Blechbearbeitung.

Papiermaschinen

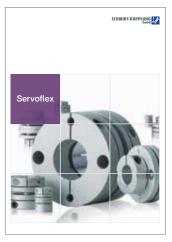
Schmidt-Kupplung werden in nahezu allen erwähnten Stationen auf Grund ihrer Präzision, Kompaktheit und Verlagerungskapazität eingesetzt. So befinden sich Schmidt-Kupplung u.a. im Antrieb von Siebwalzen, Brustwalzen, bei Papierschneidern wie Längs- und Querschneider, Dreischneider und Rollschneideranlagen.

Druckmaschinen

Schmidt-Kupplung finden in vielen Stationen des Druckprozesses Anwendung. Durch die kompakte Bauform der Kupplungssysteme kann dabei die Konstruktion des jeweiligen Antriebsstrangs sehr kompakt gestaltet werden. Der Einsatz der Präzisionskupplungen Schmidt-Kupplung beginnt beim Antrieb in Druckwerken, Farbwalzen und Duktorwalzen. Eine hohe Ausbringungsleistung und Produktivität wird durch die kompakten und drehsteifen Kupplungen sichergestellt. Einzelne Farbwalzen und Duktorwalzen können während des Betriebes durch die hohen Verlagerungs- und Versatzmöglichkeiten der kompakten Kupplungssysteme abgeschwenkt werden.

Walzenvorschübe
Besäumscheren
Siebwalzen
Querschneider
Duktorwalzen u.v.m.

Übersicht Produktprogramm


Katalog Controlflex

Katalog Semiflex

Katalog Schmidt-Kupplung

Katalog Servoflex

Katalog Loewe GK

Katalog Omniflex

Kontakt

Antriebstechnik
RINGSPANN AG

Sumpfstrasse 7 CH-6303 Zug

Getriebetechnik

Messtechnik

Telefon +41 41 748 09 00 Telefax +41 41 748 09 09 Spanntechnik

www.ringspann.ch info@ringspann.ch

eMail: info@schmidt-kupplung.com Web: www.schmidt-kupplung.com

09/2014