RINGSPANN AG

RINGSPANN® Eingetragenes Warenzeichen der RINGSPANN GmbH, Bad Homburg

HELI-CAL® FLEXURES

Kupplungen und Präzisionsfedern

Inhaltsverzeichnis

HELI-CAL® Flexures

Das HELI-CAL® Flexure Konzept – die Grundlage	3
Übersicht der Standard-Kupplungen	4
Kundenspezifische Kupplungen	6
Technische Grundlagen	8
Konstruktionsmerkmale	11
Miniatur-Kupplung Serie A (Aluminium)	14
Miniatur-Kupplung Serie H (Stahl, rostfrei)	16
Standard-Kupplung Serie WA (Aluminium)	18
Standard-Kupplung Serie W7 (Stahl, rostfrei)	20
Standard-Kupplung Serie DSAC (Aluminium)	22
Standard-Kupplung Serie DS (Aluminium)	24
Standard-Kupplung Serie MC (Aluminium)	26
Standard-Kupplung Serie MC7 (Stahl, rostfrei)	28
Standard-Kupplung Serie PF (Aluminium oder Stahl, rostfrei)	30
Standard-Kupplung Serie X (Aluminium)	32
HELI-CAL®-Flexures – Universal Joints	
HELI-CAL®-Flexures – Universal Joints	34
Fragebogen für kundenspezifische HELICAL Kupplungen und U-Joints	36
Machined Springs	
Kundenspezifische HELICAL Präzisionsfedern	38
Technische Grundlagen	40
Konstruktionsmerkmale	44
Zusammenfassung – Facts & Figures	47
Fragebogen für kundenspezifische HELICAL Druck- und Zugfedern	49
Fragebogen für kundenspezifische HELICAL Torsionsfedern	50

Das HELI-CAL® Flexure Konzept – die Grundlage

HELI-CAL®-Flexures bzw. -Kupplungen sind aus einem Stück gefertigte Wellenkupplungen, die aus homogenen Werkstoffen hergestellt werden. Sie bestehen in ihrer Grundform aus einem zylindrischen Körper, in dem eine helixförmige verlaufende Nut (Flexure) eingearbeitet ist. Diese schraubenartige Form erlaubt eine genaue Flexzone, aus der sich eine exakt berechenbare Elastizität ergibt.

Der «Einstück-Vorteil» fasst mehrere Funktionen und Einzelteile zu einer einzigen, platzsparenden Einheit zusammen. HELICAL-Kupplungen besitzen keine zusätzlichen, beweglichen Teile und sind dadurch verschleissfrei. Dies ergibt auch eine hohe dynamische Stabilität sowie vibrationsfreie, ruhig laufende Lagerbelastungen, auch bei grossen Verlagerungen.

Zur Verbindung der Anschlusswellen stehen bei den **Standard-Kupplungen** Klemmnaben oder Stiftschrauben zur Auswahl.

Für Ihre spezifische Ausführung können Sie die Anschlüsse frei wählen, wie auf obigem Bild ersichtlich. Die Materialspezifikationen sind unter der Voraussetzung, dass das Material spanabhebend bearbeitbar ist, frei wählbar.

HELICAL-Kupplungen werden in sehr vielen Bereichen eingesetzt. Überall dort, wo es darum geht, Bewegung zu beherrschen und zu kontrollieren.

Übersicht der Standard-Kupplungen

Kundenspezifische Kupplungen siehe Seite 6/7, Fragebogen Seite 36

Serie A und H

Ausführung A: Aluminium Ausführung H: Stahl, rostfrei

Serie W

Ausführung WA: Aluminium Ausführung W7: Stahl, rostfrei

Serie DSAC

Aluminium

Serie DS

Charakteristik

Universell einsetzbare, wartungsfreie und schwingungsdämpfende Miniatur-Kupplung mit geringen Rückstellkräften für sehr leichte bis mittlere Anwendungen. Universell einsetzbare Kleinkupplung für spielfreie winkelsynchrone Übertragung von Drehbewegungen für leichte (Alu) und mittlere Anwendungen (Stahl) bei optimalem Ausgleich von Wellenverlagerungen. Hohe Drehsteifigkeit dank zweigängigem Wendel; hoher Radialversatz aufgrund der zwei parallel angeordneter Wendel. Kompakte Version der Serie «DSAC» mit höherer Drehsteifigkeit und erhöhtem Drehmoment, dank zweigängigem Wendel.

Anwendungsgebiete

- Instrumentenbau
- Messtechnik
- Medizinaltechnik
- Feinmechanik
- Kleinmotoren

- Encoder
- Tachogeneratoren
- Spindelantriebe
- Antriebe mit hoher Drehzahl
- Winkelgetriebe
- Resolver
- Encoder
- Spindelantriebe
- Antriebe mit hoher Drehzahl und hoher Drehsteifigkeit
- Resolver
- Encoder
- Präzisions-Spindelantriebe

Zulässiger Wellenversatz

winklig 5° radial $\pm 0,25 \text{ mm}$ axial $\pm 0,25 \text{ mm}$

 $\begin{array}{lll} \text{winklig} & 5\,^{\circ} \\ \text{radial} & \pm\,0,25\,\,\text{mm} \\ \text{axial} & \pm\,0,25\,\,\text{mm} \end{array}$

winklig radial axial 3° ±0,25 mm ±0,20 mm winklig radial

axial

3° ±0,15 mm ±0.20 mm

Drehmomente

Aluminium bis 7,2 Nm Stahl, rostfrei bis 10,5 Nm Aluminium bis 19 Nm Stahl, rostfrei bis 37 Nm bis 26 Nm

bis 41 Nm

Standard Bohrungsdurchmesser

2-19 mm

3-38 mm

4,8-32,5 mm

4-16 mm

Befestigungsart (Welle/Nabe)

Stellschrauben, Klemmverbindung Stellschrauben, Klemmverbindung

Klemmverbindung

Stellschrauben, Klemmverbindung

Temperaturbereich

Aluminium bis 100° C Stahl, rostfrei bis 300° C Aluminium bis 100° C Stahl, rostfrei bis 300° C bis 100° C

bis 100° C

Drehzahl (höhere Drehzahlen auf Anfrage)

bis 10'000 min⁻¹

bis 10'000 min⁻¹

bis 10'000 min⁻¹

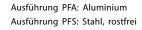
bis 10'000 min⁻¹

Weitere Informationen siehe Seite

14-17

18-21

22-23


24-25

Serie MC

Serie PF

Serie X

Ausführung MCA: Aluminium Ausführung MC7: Stahl, rostfrei

Aluminium

Charakteristik

Hoher Radialversatz bei hohem Drehmoment, breites Angebot verschiedenster Wellendurchmesser. Leistungsstarke «PowerFlex» Kupplung für höhere Drehmomente. Die torsionssteife Übertragung der Drehbewegung erfolgt mittels zwei 2-gängigen Wendeln, die somit eine gute Winkel- und Radialverlagerung zulassen. Konus-Spannelemente sorgen für eine sichere spielfreie Wellen-Naben-Verbindung.

Eine spielfreie, torsionssteife, robuste und resonanzstabile Kreuzschlitzkupplung. Dank einem geringem Massenträgheitsmoment geeignet für hochauflösende Messsysteme mit schnellen Start/Stop-Zyklen. Kostengünstige Alternative zur Balgkupplung.

Anwendungsgebiete

- Allg. Maschinenbau
- Apparatebau
- Spindelantriebe
- Pumpenbau

- Automation
- Roboter
- Handling-, Positionssysteme
- Lebensmittelindustrie
- Druckmaschinen
- Werkzeugmaschinen
- Servomotoren
- Regelsystemen
- Positioniersystemen
- Schrittmotoren

Zulässiger Wellenversatz

 $\begin{array}{ll} \mbox{winklig} & 5\,^{\circ} \\ \mbox{radial} & \pm\,0,75\,\,\mbox{mm} \\ \mbox{axial} & \pm\,0,25\,\,\mbox{mm} \end{array}$

 $\begin{array}{lll} \mbox{winklig} & 4\,^{\circ} \\ \mbox{radial} & \pm 0,85 \mbox{ mm} \\ \mbox{axial} & \pm 0,5 \mbox{ mm} \end{array}$

winklig 3° radial ± 0.2 mm axial ± 0.25 mm

Drehmomente

Aluminium bis 37 Nm Stahl, rostfrei bis 83 Nm Aluminium bis 95 Nm Stahl, rostfrei bis 205 Nm bis 10 Nm

Standard Bohrungsdurchmesser

5-44 mm

12-44 mm

3-22 mm

Befestigungsart (Welle/Nabe)

Stellschrauben, Klemmverbindung Konus-Spannelement

Klemmverbindung

Temperaturbereich

Aluminium bis 100 °C Stahl, rostfrei bis 300 °C

Aluminium bis 100°C Stahl, rostfrei bis 300°C bis 100°C

Drehzahl (höhere Drehzahlen auf Anfrage)

bis 3'600 min⁻¹

bis 6'000 min⁻¹

bis 10'000 min⁻¹

Weitere Informationen siehe Seite

26-29

30-31

32-33

Kundenspezifische Kupplungen

Wie eingangs erwähnt, sind die vielseitigen Anwendungsmöglichkeiten einer HELICAL-Präzisionswellenverbindung durch die Katalog-Baureihen keinesfalls ausgeschöpft. Kundenspezifische Lösungen sind unsere Spezialität. Sogar Kleinstkupplungen, welche in Mikroapparaten in den menschlichen Körper implantiert werden, wurden bereits realisiert. Dabei hat sich der Vorteil der freien Materialwahl für HELICAL-Kupplungen bewährt.

Nachfolgend sehen Sie einige Beispiele, welche erfolgreich realisiert wurden.

Branche: Lebensmittelindustrie Anwendung: Verstellspindel

Branche: Druckmaschinen Anwendung: Spannkupplung

Branche: Messtechnik Anwendung: Antriebsritzel

Kundennutzen für obige Anwendungsbeispiele:

Durch die Integration von HELICAL-Präzisionswellenverbindungen (z.B. Kupplung/Ritzel) kann die Lebensdauer und die Sicherheit des Bauteils erhöht werden. Gleichzeitig werden die Gesamtkosten (Stückkosten, Montage, Beschaffung) optimiert.

Vorteile einer kundenspezifischen Kupplung mit integrierten Funktionen

Ihre Gesamtkosten werden reduziert

- Weniger Bauteile für eine Funktion
- Geringere Montagezeiten
- Minimierung Beschaffungsaufwand

Ihre Sicherheit wird erhöht

- Nur ein Bauteil eindeutige Schnittstellen
- Ein Ansprechpartner für mehrere Funktionen – Erhöhung der Systemsicherheit und des Qualitätsstandards

Ihre Lager- und Administrationskosten werden optimiert

- Weniger Bauteile an Lager
- Reduktion von Bestellungen und Lieferanten

Ihr Entwicklungsaufwand wird verringert

- Auf Wunsch erstellen wir Ihnen kostenlose Konstruktionsvorschläge
- Nutzen Sie unsere Berechungs-Software

Technische Grundlagen

Die Einsatzgebiete der HELICAL-Kupplungen sind sehr vielfältig. Präzise Übertragung der Drehbewegung mit hoher Winkeltreue sind typische Merkmale der «Einstück-Kupplung». Als flexible Wellenverbindung ist die Kupplung in der Lage, gleichzeitig verschiedene Wellenverlagerungen, wie Winkel-, Radial-, Axial- und Schrägverlagerung (dreidimensional) korrekt auszugleichen.

Winkel-Verlagerung

Die Winkel- Verlagerung kommt relativ häufig vor. Bei der HELICAL-Kupplung wird sie dadurch erreicht, dass sich die inneren Stege schliessen, während sich die äusseren dehnen. Bei genügendem Raum zwischen der wendelförmigen Nut sind Verlagerungen bis 20° oder mehr möglich. Sogenannte «U-Joints» (siehe auch S. 36) können sogar Verlagerungen bis zu 90° übertragen.

Radial-Verlagerung

Eine Radial-Verlagerung zu kompensieren, stellt hohe technische Anforderungen an eine Kupplung. Können die Verlagerungen in einem Kupplungssystem nicht ausgeglichen werden, beschädigen die resultierenden Querkräfte die Lagerstellen. Das «Flexure»-Prinzip bietet hier die passende Lösung. Die maximal zulässigen Werte im Standard-Katalogprogramm liegen bei +/- 0,8 mm. Kundenspezifische Anwendungen erlauben auch höhere Werte.

Schräg-Verlagerung (dreidimensional)

In diesem Fall besitzen die Antriebswellen keine gemeinsame Ebene. Die HELICAL- Kupplung gleicht auch diese dreidimensional wirkende Verlagerung aus. Dies bedingt jedoch einen relativ langen Wendel (mit «Wendel» wird die Kupplungs-Nut bezeichnet).

Optimierte Drehmomentkapazität

Faktoren wie z.B. dynamische Belastung, Schwingungen, Stösse und zusätzliche Verlagerungen haben Einfluss auf das übertragbare Drehmoment. Auf der Basis der technischen Materialdaten wird das zulässige Kupplungs-Drehmoment errechnet. Sofern alle Einsatzbedingungen bekannt sind und diese nicht von den Katalogangaben abweichen, ist die HELICAL-Kupplung in Bezug auf die Drehmomentübertragung für eine nahezu unendliche Lebensdauer ausgelegt.

Konfigurierbare Drehsteifigkeit

Die Drehsteifigkeit der Standard-Kupplungen ist in den Tabellen (Seiten 14 bis 33) ersichtlich. Für kundenspezifische Anwendungen kann diese unter Berücksichtigung der technischen Vorgaben wunschgemäss angepasst werden. Eine gewisse Torsions-Elastizität ist jedoch in jeder Wellenverbindung vorhanden.

Sanfte Lagerbelastung

Nebst den zu übertragenden Drehmomenten und Kräften hat die Kupplung aufgrund ihrer Bauart Einfluss auf die Lagerbelastung. Insbesondere wechselnde Kräfte können Schäden in den Lagerstellen oder den angetriebene Elementen bewirken. Die Federkonstante der HELICAL-Kupplungen ist bei der Rotation an allen Punkten gleich gross und gewährleistet somit eine konstante radiale Lagerbelastung bei niedrigen und hohen Drehzahlen.

Drehzahlen

Aufgrund geringer Massenträgheitsmomente können HELICAL-Kupplungen in einem grossen Drehzahlbereich, im Reversierbetrieb und bei sehr hohen Taktzahlen eingesetzt werden.

Die Standard HELICAL-Kupplungen sind ausgelegt für Drehzahlen bis max. 10'000 min⁻¹, wobei für spezielle Anwendungen bereits 50'000 min⁻¹ erfolgreich realisiert wurden. Für entsprechende Anwendungen kontaktieren Sie bitte unsere Technik.

«Anpassungsfähige» Drehzahlen

Ein weiterer Vorteil ist die Anpassungsfähigkeit an niedrige und hohe Drehzahlen. Die Kupplung überträgt die Bewegung gleichmässig in einer fortlaufenden Spirallinie über die ganze Länge. Die Torsionsbelastung neigt dazu, die Kupplung zur Achse hin aufzuwickeln und vermindert dadurch Schwingungsbewegungen, die normalerweise bei rotierenden Teilen auftreten.

Konstante Geschwindigkeit

Die aus einem Stück gefertigte HELI-CAL-Kupplung erreicht aufgrund der minimalen Fertigungstoleranzen ein präzises Arbeiten bei stets gleicher Winkelgeschwindigkeit an der An- und Abtriebsseite. Unabhängig von der Verlagerung bleibt die Winkelsynchronisation der verbundenen Wellen immer konstant. Durch die «Einstück-Ausführung» ist die Kupplung spielfrei und es entsteht keine Unwucht.

Axial-Ausgleich

Axialspiel kann in einem bestimmten System erwünscht sein oder entsteht durch die verschiedenen Toleranzen der Einzelteile beim Zusammenbau, durch Temperaturveränderungen, durch Verdrehung etc. Der zulässige Axial-Versatz der Standard-Kupplungen ist in den Tabellenwerten aufgeführt. Dabei ist der Axialdruck, welcher durch das Drehmoment erzeugt wird, vernachlässigbar klein. Für kundenspezifische Ausführungen kann der geforderte Axial-Versatz selbstverständlich wunschgemäss berechnet und die Kupplung entsprechend hergestellt werden.

Schwingungsdämpfung

Durch das schraubenförmig verlaufende, flexible Kupplungsprofil können unerwünschte Torsionsschwingungen eines rotierenden Systems wesentlich verringert werden. Die HELICAL-Kupplungen arbeiten ruhig und erzeugen selbst keine Eigenschwingungen.

Konstruktionsmerkmale

Auslegungsparameter für kundenspezifische Kupplungen

Wie in den technischen Grundlagen erwähnt, kann die HELICAL-Kupplung nach Ihren spezifischen Vorgaben hergestellt werden. Folgende Parameter beeinflussen die Kupplungseigenschaften und können für Ihre Anwendung berücksichtigt werden:

- Wendelgestaltung (mit «Wendel» wird die Kupplungs-Nut bezeichnet)
- Wendellänge
- Anzahl der Wendel (mehrgängig)
- Bohrungsdurchmesser
- Unterschiedliche Wendelstegquerschnitte
- Material

Wendelstegdicke und Wendellänge

Durch Veränderung der Wendelsteigung wird über die veränderte Wendelstegdicke das Drehmoment, die Drehsteifigkeit und die axiale Bewegung beeinflusst (Bild 1).

Wird die Wendellänge verändert, bleibt das Drehmoment konstant, während alle weiteren Eigenschaften je nach Ausführung variieren können (Bild 2).

Bild 1

Bild 2

Anzahl Wendel

Je nach Konstruktionsanforderung können auch mehrgängige Wendel hergestellt werden:

- 1. Der **eingängige** Wendel (Standardausführung)
- 2. Der **zweigängige** Wendel mit um 180° versetztem Anfang
- 3. Der **dreigängige** Wendel mit um 120° versetztem Anfang

Beim Einsatz von mehrgängigen Wendeln (zwei- oder dreigängig) erhöht sich das Drehmoment und die Drehsteifigkeit sowie die Rundlaufgenauigkeit. Hingegen reduziert sich im Vergleich zum eingängigen Wendel die Ausgleichsmöglichkeit von Fluchtungsfehlern (Bild 3).

Bild 3

Bohrungsdurchmesser

Unterschiedliche Bohrungsdurchmesser bei gleicher Wendelausgestaltung und bei gleichem Aussendurchmesser bewirken eine Veränderung des Drehmoments, der Drehsteifigkeit und der Federwirkung (Bild 4).

Bild 4

Material

Die Präzisions-Wellenkupplungen werden serienmässig aus 7075-T6 (ANSI) Aluminium-Legierungen mit matt eloxierter Oberfläche oder aus 17–4PH (ANSI) hochvergütetem, korrosionsbeständigem Chrom-Nickel-Stahl gefertigt. Für kundenspezifische Anwendungen kann das Material frei gewählt werden, so z.B. Kunststoff oder Titan. Voraussetzung ist, dass das Material mechanisch bearbeitet werden kann.

Typenvielfalt

Grundsätzlich sind zwei Grundformen zu unterscheiden:

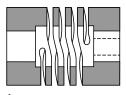
- Kupplungen mit durchgehender Innenbohrung. Verschiedene Ausführungen siehe Bild 1 bis 4
- Sacklochbohrungen bzw. nicht durchgehende Bohrung, siehe Bild 5.
 Diese Ausführung überträgt gegenüber den anderen Ausführungen (1 bis 4) höhere Drehmomente sowie höhere Torsionssteifigkeiten bei geringerem Aussendurchmesser und geringerer Länge. Diese Ausführung ist jedoch axial steif und kann nur Winkelverlagerungen ausgleichen.

Bei den Ausführungen gemäss Bild 1 bis 4 gibt es verschiedene Varianten bezüglich des Innendurchmessers:

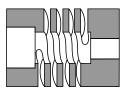
1 Kupplung mit Hinterdrehung:

- Innendurchmesser ist grösser als Wellendurchmesser.
- Wellen können sich gegenseitig berühren.

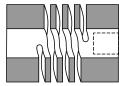
2 Abgesetzte Anordnung

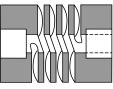

- Innendurchmesser ist kleiner als grosser Wellendurchmesser, jedoch grösser als kleiner Wellendurchmesser.
- Wellen können sich gegenseitig berühren.

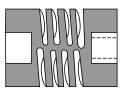
3 Beschränkte Wellenlänge


- Innendurchmesser und beide Wellendurchmesser sind gleich gross.
- Wellenlänge muss auf die Länge der Kupplungsnabe beschränkt sein.
- Kupplung kann durch Aufschieben auf eine Welle ein- bzw. ausgebaut werden.

4 Abgesetzter Wellendurchmesser


- Innendurchmesser ist kleiner als Wellendurchmesser.
- Die Wellen können sich nicht berühren.
- Der Vorteil ist eine hohe Drehsteifigkeit bei kleinen Kupplungen.




2

3

4

5

Befestigungen

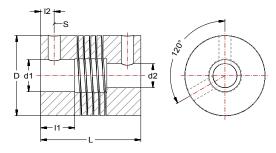
Neben den beiden standardmässigen Befestigungsarten (Stellschrauben und Klemmnaben) können andere gebräuchliche bzw. kundenspezifische Verbindungsarten geliefert werden:

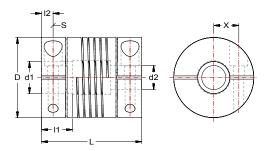
- wechselseitig Stellschraube oder Klemmverbindung
- Stiften, Bolzen, Zapfen
- Passfeder
- Flansch
- Gewindezapfen, Gewindebohrung
- konische Bohrung
- einfach- oder zweifach abgeplattete
 Bohrung
- Splineverzahnung
- usw.

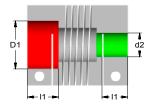
Bemerkung

Die bei der Klemmverbindung erzeugte Befestigungsreibung genügt zur Übertragung des geforderten Drehmoments. Eine zusätzliche Passfeder ist nicht erforderlich. Auf Wunsch und für spezielle Einsatzfälle kann jedoch eine Klemmverbindung mit Passfeder geliefert werden.

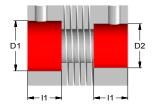
Kupplung mit einseitiger Halbschale und integrierter Abtriebswelle


Kupplungssatz mit Spline-Verzahnung

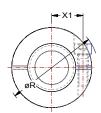

Kupplungsende mit Bajonettverschluss und integrierter Abtriebswelle


Miniatur-Kupplung Serie A (Aluminium)

Stellschraube



Klemmnabe



Sackloch einseitig

Sackloch beidseitig

Berücksichtigung lichte Weite «R» ab kleinstem Sacklochdurchmesser

Standardausführung mit Bohrungshinterdrehung

Bohrungen

10 12 15

					(d1,	d2)		mi
					Min.	Standard		(D
Stellschraube								
AR 037	9,5	9,4	1,6	M2	1,6	2 2,4		2,5
AR 050	12,7	12,7	1,6	M2	2,3	2,5 3		3,3
AR 062	15,9	15,7	1,9	M3	2,3	3 4 5		5,1
AR 075	19,1	19,1	2,4	M3	3	3 4 5 6		6,4
AR 087	22,2	22,1	2,5	M3	3	4 5 6 8		8,1
AR 100	25,4	25,4	3,8	M5	4	5 6 8		9,6
AR 112	28,6	28,4	3,6	M5	4,8	6 8 10 12		13,
AR 125	31,8	31,8	4,2	M6	8	10 12 15		15,
Klemmnabe								
ACR 037*	9,5	14,3	1,8	0-80	2	2 2,5 3	2,4 2,4 3,1	3,1
ACR 050	12,7	19,1	1,6	M1,6	2,3	2,5 3	3,6	3,3
ACR 062	15,9	20,3	2,5	M2	2,3	3 4 5	4,8	5,1
ACR 075	19,1	22,9	3,0	M2,5	3	3 4 5 6	5,6	6,4
ACR 087	22,2	26,9	3,8	M3	3,5	4 5 6 8	6,3	8,1
ACR 100	25,4	31,8	3,8	M3	4	5 6 8	7,9	9,6
ACR 112	28,6	38,1	3,8	M3	4,8	6 8 10 12	9,4	13,

Bohrung mit Sackloch 1)

Sackloch min./max. (D1, D2)	lichte Weite Ø R	l1	X1
2,5 bis 6,0		2,2	
3,3 bis 8,0		3,0	
5,1 bis 9,5		3,5	
6,4 bis 13,0		4,5	
8,1 bis 16,0		5,0	
9,6 bis 16,0		6,6	
13,1 bis 16,0		6,8	
15,9 bis 19,0		8,1	
3,10 bis 3,5	10,7	3,6	3,1
3,3 bis 6,0	14,1	4,8	4,5
5,1 bis 8,2	17,7	5,0	5,8
6,4 bis 9,9	21,7	6,3	7,0
8,1 bis 11,2	25,8	7,8	8,2
9,6 bis 14,3	28,9	7,8	9,7
13,1 bis 17,3	31,9	11,4	11,2
15,9 bis 17,0	36,5	12,9	12,2

41,1

^{31,8} *Schraubenkopf überragt Kupplungsaussendurchmesser, Schraube nur in Zollausführung

¹⁾ Techn. Daten siehe entsprechende Standard-Kupplungen mit

Zulässiger Wellenversatz

– Winklig 5°

Radial +/-0,25 mmAxial +/-0,25 mm

Max. Drehzahl n = 10'000 min⁻¹

Zulässige Einsatztemperatur $T_{max} = 100 \, ^{\circ}C$

Material: Aluminium 7075-T6, Werkstoff-Nr. 3.4365

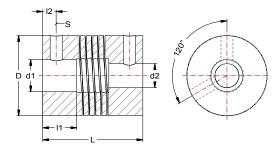
Toleranzen

Bohrung: 0/+0.05 mm Welle (empfohlen): -0,005/-0,013 mm

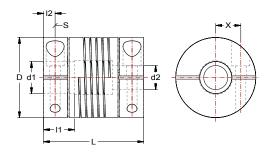
Sonderabmessungen

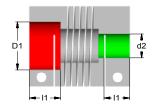
- Bohrungsdurchmesser kundenspezifisch, auch in Zollabmessungen (Kombination Zoll/ metrisch) möglich
- Eingeschränkte Bohrungstoleranz: 0/+0.015 mm

Bestellangaben

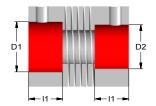

Ausführung (Stellschraube oder Klemmnabe), Grösse – Durchmesser d1 (mm) – Durchmesser d2 (mm)

Beispiel: AR 062 – 5 mm – 4 mm (grösserer Ø immer zuerst)

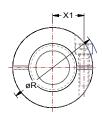

Drehmoment	t, Standardboh	nrungen d1, d2	Steifigkeiten,	Standardbohi	rungen d1, d2	Werte basier	end auf d1 mi	n.
kurzfristig (Nm)	dauernd einseitig (Nm)	dauernd reversierend (Nm)	Dreh- steifigkeit Ct (Nm/rad)	Radialfeder- steifigkeit (N/mm)	Axialfeder- steifigkeit (N/mm)	Massen- trägheits- moment J (x 10 ⁻⁶ kgm²)	Gewicht (g)	Schrauben- anzugs- moment (Nm)
0,34 0,34	0,17 0,17	0,08 0,08	1,9 1,5	61,5 52,8	11,5 8,9	0,020	1,5	0,21
0,64 0,64	0,34 0,34	0,17 0,17	6,5 5,2	145 121	33,1 23,9	0,078	4,0	0,21
1,6 1,4 1,1	0,80 0,70 0,55	0,40 0,35 0,28	13,2 9,8 7,1	178 142 112	42,8 27,9 19,3	0,24	7,0	1,0
2,7 2,5 2,3 2,0	1,40 1,30 1,20 1,00	0,70 0,65 0,60 0,50	23,0 18,0 14,0 10,6	208 172 142 116	42,8 28,1 19,8 14,5	0,61	11,5	1,0
3,7 3,6 3,4 3,2	1,9 1,8 1,7 1,6	1,0 0,9 0,9 0,8	38,3 31,1 24,8 15,4	292 247 208 144	61,9 44,0 32,5 19,5	1,36	20,0	1,0
4,0 4,0 3,6	2,0 2,0 1,8	1,0 1,0 0,9	47,3 39,2 26,3	280 241 180	44,1 32,8 20,1	2,60	31,0	4,7
7,2 6,3 5,2 4,7	3,6 3,2 2,6 2,4	1,8 1,6 1,3 1,2	70,1 49,8 34,4 22,9	303 235 180 134	58,4 36,4 24,2 16,7	4,63	43,0	4,7
5,3 4,7 3,6	2,7 2,4 1,8	1,3 1,2 0,9	52,2 36,8 20,6	208 163 107	24,7 17,4 10,7	7,80	57,0	7,7
0,34 0,34 0,34	0,17 0,17 0,17	0,08 0,08 0,08	1,9 1,5 1,5	61,5 52,8 52,8	11,5 8,86 8,86	0,024	2,0	0,22
0,64 0,64	0,34 0,34	0,17 0,17	6,5 5,2	145 121	33,1 23,9	0,124	6,0	0,3
1,6 1,4 1,1	0,80 0,70 0,55	0,40 0,35 0,28	13,2 9,8 7,1	178 142 112	42,8 27,9 19,3	0,32	10,0	0,5
2,7 2,5 2,3 2,0	1,40 1,30 1,20 1,00	0,70 0,65 0,60 0,50	23,0 18,0 14,0 10,6	208 172 142 116	42,8 28,1 19,8 14,5	0,75	15,0	1,2
3,7 3,6 3,4 3,2	1,9 1,8 1,7 1,6	1,0 0,9 0,9 0,8	38,3 31,1 24,8 15,4	292 247 208 144	61,9 44,0 32,5 19,5	1,69	25,0	2,0
4,0 4,0 3,6	2,0 2,0 1,8	1,0 1,0 0,9	47,3 39,2 26,3	280 241 180	44,1 32,8 20,1	3,39	39,0	2,0
7,2 6,3 5,2 4,7	3,6 3,2 2,6 2,4	1,8 1,6 1,3 1,2	70,1 49,8 34,4 22,9	303 235 180 134	58,4 36,4 24,2 16,7	6,33	57,0	2,0
5,3 4,7 3,6	2,7 2,4 1,8	1,3 1,2 0,9	52,2 36,8 20,6	208 163 107	24,7 17,4 10,7	10,51	76,0	4,7


Miniatur-Kupplung Serie H (Stahl, rostfrei)

Stellschraube



Klemmnabe



Sackloch einseitig

Sackloch beidseitig

Berücksichtigung lichte Weite «R» ab kleinstem Sacklochdurchmesser

Stand

dardausführung mit Bohrungshinterdrehung	Bohrung mit Sacklock

Stellschraube	D	L	L2	S	(d1	rungen , d2) Standard	X	Sackloch min./max. (D1, D2)	lichte Weite Ø R	11	X1
HR 037	9,5	9,4	1,6	M2	2	2 2,4		2,5 bis 6,0		2,2	
HR 050	12,7	12,7	1,6	M2	2,3	2,5 3		3,3 bis 8,0		3,0	
HR 062	15,9	15,7	1,9	M3	2,3	3 4 5		5,1 bis 9,5		3,5	
HR 075	19,1	19,1	2,4	M3	3	3 4 5 6		6,4 bis 13,0		4,5	
HR 087	22,2	22,1	2,5	M3	3	4 5 6 8		8,1 bis 16,0		5,0	
HR 100	25,4	25,4	3,8	M5	4	5 6 8		9,6 bis 16,0		6,6	
HR 112	28,6	28,4	3,6	M5	4,8	6 8 10 12		13,1 bis 16,0		6,8	
HR 125	31,8	31,8	4,2	M6	8	10 12 15		15,9 bis 19,0		8,1	
Klemmnabe											
HCR 037*	9,5	14,3	1,8	M1,4	2	2 2,5 3	2,6 2,6 3,1	3,10 bis 3,5	10,7	3,6	3,1
HCR 050	12,7	19,1	1,6	M1,6	2,3	2,5 3	3,6	3,3 bis 6,0	14,1	4,8	4,5
HCR 062	15,9	20,3	2,5	M2	2,3	3 4 5	4,8	5,1 bis 8,2	17,7	5,0	5,8
HCR 075	19,1	22,9	3,0	M2,5	3	3 4 5 6	5,6	6,4 bis 9,9	21,7	6,3	7,0
HCR 087	22,2	26,9	3,8	M3	3,5	4 5 6 8	6,3	8,1 bis 11,2	25,8	7,8	8,2
HCR 100	25,4	31,8	3,8	M3	4	5 6 8	7,9	9,6 bis 14,3	28,9	7,8	9,7
HCR 112	28,6	38,1	3,8	M3	4,8	6 8 10 12	8,4	13,1 bis 17,3	31,9	11,4	11,2
HCR 125	31,8	41,1	5,6	M4	8	10 12 15	9,7	15,9 bis 17,0	36,5	12,9	12,2

^{*}Schraubenkopf überragt Kupplungsaussendurchmesser, Schraube nur in Zollausführung

¹⁾ Techn. Daten siehe entsprechende Standard-Kupplungen mit

Zulässiger Wellenversatz

– Winklig 5°

Radial +/-0,25 mmAxial +/-0,25 mm

Max. Drehzahl n = 10'000 min⁻¹

Zulässige Einsatztemperatur $T_{max} = 315$ °C

Material: Stahl, rostfrei 17-4PH, Werkstoff-Nr. 1.4542

Toleranzen

Bohrung: 0/+0.05 mm Welle (empfohlen): -0,005/-0,013 mm

Sonderabmessungen

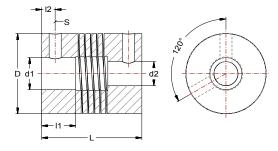
- Bohrungsdurchmesser kundenspezifisch, auch in Zollabmessungen (Kombination Zoll/ metrisch) möglich
- Eingeschränkte Bohrungstoleranz: 0/+0.015 mm

Bestellangaben

Ausführung (Stellschraube oder Klemmnabe), Grösse – Durchmesser d1 (mm) – Durchmesser d2 (mm)

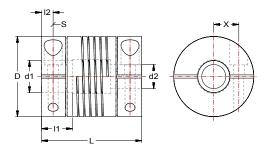
Beispiel: HCR 075 – 5 mm – 4 mm (grösserer Ø immer zuerst)

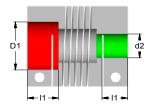
Drehmoment, Standardbohrungen d1, d2

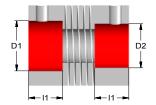

Steifigkeiten, Standardbohrungen d1, d2

Werte basierend auf d1 min.

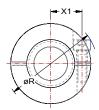
Dicimionicin	., Standardson	irungen u 1, uz	Stemgkerten,	Standardbom	ungen un, uz	werte basierend auf dir inin.			
kurzfristig (Nm)	dauernd einseitig (Nm)	dauernd reversierend (Nm)	Dreh- steifigkeit Ct (Nm/rad)	Radialfeder- steifigkeit (N/mm)	Axialfeder- steifigkeit (N/mm)	Massen- trägheits- moment J (x 10 ⁻⁶ kgm²)	Gewicht (g)	Schrauben- anzugs- moment (Nm)	
0,28 0,28	0,14 0,14	0,07 0,07	5,6 4,2	194 159	34 25	0,047	4	0,21	
0,85 0,80	0,43 0,40	0,21 0,20	17,4 14,3	392 338	96 69	0,209	10	0,21	
1,6 1,5 1,4	0,80 0,75 0,70	0,40 0,38 0,35	36,6 27,1 20,1	498 396 313	123 80 55	0,66	20	1,0	
2,4 2,3 2,2 2,0	1,20 1,15 1,10 1,0	0,60 0,58 0,55 0,50	63,5 49,8 38,5 29,2	581 479 396 324	123 80 56 41	1,69	36	1,0	
4,2 4,0 3,9 3,4	2,1 2,0 2,0 1,7	1,1 1,0 1,0 0,9	106,3 86,1 68,6 42,6	816 690 581 410	177 126 93 56	3,62	57	1,0	
6,1 5,9 5,3	3,1 3,0 2,7	1,6 1,5 1,4	131,0 108,4 72,9	782 674 502	126 94 57	7,12	85	4,7	
9,4 8,8 8,0 6,6	4,7 4,4 4,0 3,3	2,4 2,2 2,0 1,7	193,9 138,1 95,2 63,5	848 656 502 375	167 104 69 48	12,77	120	4,7	
10,5 8,7 7,1	5,3 4,4 3,6	2,7 2,2 1,8	144,2 101,8 56,8	583 293 300	71 50 30	21,92	157	7,7	
0,28 0,28 0,28	0,14 0,14 0,14	0,07 0,07 0,07	5,6 4,2 4,4	194 159 166	34 25 26	0,071	6	0,22	
0,85 0,80	0,43 0,40	0,21 0,20	17,4 14,3	392 338	96 69	0,356	17	0,3	
1,6 1,5 1,4	0,80 0,75 0,70	0,40 0,38 0,35	36,6 27,1 20,1	498 396 313	123 80 55	0,88	27	0,5	
2,4 2,3 2,2 2,0	1,20 1,15 1,10 1,00	0,60 0,58 0,55 0,50	63,5 49,8 38,5 29,2	581 479 396 324	123 80 56 41	2,03	44	1,2	
4,2 4,0 3,9 3,4	2,1 2,0 2,0 1,7	1,1 1,0 1,0 0,9	106,3 86,1 68,6 42,6	816 690 581 410	177 126 93 56	4,52	71	2,0	
6,1 5,9 5,3	3,1 3,0 2,7	1,6 1,5 1,4	131,0 108,4 72,9	782 674 502	126 94 57	9,13	109	2,0	
9,4 8,8 8,0 6,6	4,7 4,4 4,0 3,3	2,4 2,2 2,0 1,7	193,9 138,1 95,2 63,5	848 656 502 375	167 104 69 48	17,63	165	2,0	
10,5 8,7 7,1	5,3 4,4 3,6	2,7 2,2 1,8	144,2 101,8 56,8	583 293 300	71 50 30	29,38	213	4,7	


Standard-Kupplung Serie WA (Aluminium)


Stellschraube


Klemmnabe

D



Sackloch einseitig

Sackloch beidseitig

Berücksichtigung lichte Weite «R» ab kleinstem Sacklochdurchmesser

Standardausführung mit Bohrungshinterdrehung

Bohrungen

X

		_					
					(d1,	d2)	
					Min.	Standard	
Stellschraube							
WA 15	15	20	2,5	M3	3	3 4 5	
WA 20	20	20	2,5	МЗ	4	4 5 6	
WA 25	25	24	3,0	M4	6	6 7 8 9 10	
WA 30	30	30	3,5	M5	9	9 10 11 12	
WA 40	40	50	6,7	M6	12	12 13 14 15 16	
WA 50	50	54	7,5	M6	14	14 16 18 19 20	
Klemmnabe							
WAC 15	15	22	2,5	M2	3	3 4 5	4,3
WAC 20	20	28	3,7	M3	4	4 5 6	5,5
WAC 25	25	30	3,7	M3	6	6 7 8 9 10	7,7
WAC 30	30	38	5,0	M4	9	9 10 11 12	8,8
WAC 40	40	50	5,8	M5	12	12 13 14 15 16	12,5
WAC 50	50	54	6,7	M6	14	14 16 18 19 20	16,3

L2

Bohrung mit Sackloch 1)

Sackloch min./max. (D1, D2)	lichte Weite Ø R	I1	X1
5,1 bis 9,0		4,8	
6,4 bis 14,0		4,8	
10,1 bis 17,0		5,9	
12,8 bis 20,0		6,8	
16,1 bis 25,4		17,0	
20,1 bis 38,1		17,0	
5,1 bis 7,3	16,8	6,0	5,3
6,4 bis 9,8	23,6	8,6	7,1
10,1 bis 14,5	28,5	8,6	9,5
12,8 bis 17,3	34,8	11,0	11,3
16,1 bis 24,8	46,0	15,5	15,6
20,1 bis 32,1	56,8	15,5	19,9

¹⁾ Techn. Daten siehe entsprechende Standard-Kupplungen mit grösster Bohrung

Zulässiger Wellenversatz

– Winklig 5°

Radial +/-0,25 mmAxial +/-0,25 mm

Max. Drehzahl n = 10'000 min⁻¹

Zulässige Einsatztemperatur $T_{max} = 100$ °C

Material: Aluminium 7075-T6, Werkstoff-Nr. 3.4365

Toleranzen

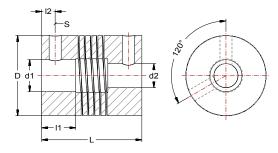
Bohrung: 0/+0.05 mm Welle (empfohlen): -0,005/-0,013 mm

Sonderabmessungen

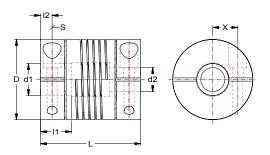
- Bohrungsdurchmesser kundenspezifisch, auch in Zollabmessungen (Kombination Zoll/ metrisch) möglich
- Eingeschränkte Bohrungstoleranz: 0/+0.015 mm

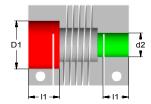
Bestellangaben

Ausführung (Stellschraube oder Klemmnabe), Grösse – Durchmesser d1 (mm) – Durchmesser d2 (mm)

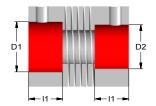

Beispiel: WA 30 – 12 mm – 10 mm (grösserer Ø immer zuerst)

Drehmoment, Standardbohrungen d1, d2 Steifigkeiten, Standardbohrungen d1, d2 Werte basierend auf d1 min.


kurzfristig (Nm)	dauernd einseitig (Nm)	dauernd reversierend (Nm)	Dreh- steifigkeit Ct (Nm/rad)	Radialfeder- steifigkeit (N/mm)	Axialfeder- steifigkeit (N/mm)	Massen- trägheits- moment J (x 10 ⁻⁶ kgm ²)	Gewicht (g)	Schrauben- anzugs- moment (Nm)
0,71 0,66 0,59	0,36 0,33 0,30	0,18 0,17 0,15	11,2 8,0 5,7	169 131 102	44 29 20	0,23	8	1,0
1,3 1,2 1,1	0,7 0,6 0,6	0,4 0,3 0,3	21,2 16,4 12,7	179 149 124	29 21 15	0,78	15	1,0
2,9 2,8 2,6 2,4 2,2	1,5 1,4 1,3 1,2 1,1	0,8 0,7 0,7 0,6 0,6	38,2 31,8 26,0 20,5 16,4	236 204 175 149 126	34 26 21 16 14	2,31	28	2,1
4,9 4,6 4,3 4,0	2,5 2,3 2,2 2,0	1,3 1,2 1,1 1,0	52,1 44,1 35,8 30,2	219 192 169 147	31 25 21 18	5,50	47	4,7
12,0 11,2 11,0 10,0 9,7	6,0 5,6 5,5 5,0 4,9	3,0 2,8 2,8 2,5 2,5	127,3 112,4 97,1 85,5 73,5	340 309 280 253 227	44 39 33 29 25	29,4	135	7,7
19,0 18,0 17,0 16,0 15,0	9,5 9,0 8,5 8,0 7,5	4,8 4,5 4,3 4,0 3,8	229,2 184,9 146,9 133,3 117,0	375 322 275 254 234	34 27 21 19 17	85,9	255	7,7
0,71 0,66 0,59	0,36 0,33 0,30	0,18 0,17 0,15	11,2 8,0 5,7	169 131 102	44 29 20	0,26	9	0,5
1,3 1,2 1,1	0,7 0,6 0,6	0,4 0,3 0,3	21,2 16,4 12,7	179 149 124	29 21 15	1,09	21	2,0
2,9 2,8 2,6 2,4 2,2	1,5 1,4 1,3 1,2 1,1	0,8 0,7 0,7 0,6 0,6	38,2 31,8 26,0 20,5 16,4	236 204 175 149 126	34 26 21 16 14	2,89	35	2,0
4,9 4,6 4,3 4,0	2,5 2,3 2,2 2,0	1,3 1,2 1,1 1,0	52,1 44,1 35,8 30,2	219 192 169 147	31 25 21 18	7,02	60	4,7
12,0 11,2 11,0 10,0 9,7	6,0 5,6 5,5 5,0 4,9	3,0 2,8 2,8 2,5 2,5	127,3 112,4 97,1 85,5 73,5	340 309 280 253 227	44 39 33 29 25	31,6	145	9,5
19,0 18,0 17,0 16,0 15,0	9,5 9,0 8,5 8,0 7,5	4,8 4,5 4,3 4,0 3,8	229,2 184,9 146,9 133,3 117,0	375 322 275 254 234	34 27 21 19 17	77,5	230	16,0

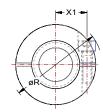

Standard-Kupplung Serie W7 (Stahl, rostfrei)

Stellschraube



Klemmnabe

Sackloch einseitig



Sackloch beidseitig

Berücksichtigung lichte Weite «R» ab kleinstem Sacklochdurchmesser

Bohrung mit Sackloch 1)

Sackloch

X1

5,3 7,1 9,5

11,3

15,6

19,9

11

lichte Weite

Stand	lardaus	runrung) mit Bo	onrungsninterarent 	ung
D	L	L2	S	Bohrungen	Χ

					(d1,	d2)		min./max.	Ø R	
					Min.	Standard		(D1, D2)		
Stellschraube										
W7 15	15	20	2,5	M3	3	3 4 5		5,1 bis 9,0		4,8
W7 20	20	20	2,5	М3	4	4 5 6		6,4 bis 14,0		4,8
W7 25	25	24	3,0	M4	6	6 7 8 9 10		10,1 bis 17,0		5,9
W7 30	30	30	3,5	M5	9	9 10 11 12		12,8 bis 20,0		6,8
W7 40	40	50	6,7	M6	12	12 13 14 15 16		16,1 bis 25,4		17,0
W7 50	50	54	7,5	M6	14	14 16 18 19 20		20,1 bis 38,1		17,0
Klemmnabe										
W7C 15	15	22	2,5	M2	3	3 4 5	4,3	5,1 bis 7,3	16,8	6,0
W7C 20	20	28	3,7	М3	4	4 5 6	5,5	6,4 bis 9,8	23,6	8,6
W7C 25	25	30	3,7	M3	6	6 7 8 9 10	7,7	10,1 bis 14,5	28,5	8,6
W7C 30	30	38	5,0	M4	9	9 10 11 12	8,8	12,8 bis 17,3	34,8	11,0
W7C 40	40	50	5,8	M5	12	12 13 14 15 16	12,5	16,1 bis 24,8	46,0	15,5
W7C 50	50	54	6,7	M6	14	14 16 18 19	16,3	20,1 bis 32,1	56,8	15,5

20

¹⁾ Techn. Daten siehe entsprechende Standard-Kupplungen mit

Zulässiger Wellenversatz

– Winklig 5°

Radial +/-0,25 mmAxial +/-0,25 mm

Max. Drehzahl n = 10'000 min⁻¹

Zulässige Einsatztemperatur $T_{max} = 315$ °C

Material: Stahl, rostfrei 17-4PH, Werkstoff-Nr. 1.4542

Toleranzen

Bohrung: 0/+0.05 mm Welle (empfohlen): -0,005/-0,013 mm

Sonderabmessungen

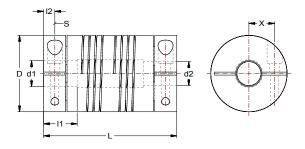
- Bohrungsdurchmesser kundenspezifisch, auch in Zollabmessungen (Kombination Zoll/ metrisch) möglich
- Eingeschränkte Bohrungstoleranz: 0/+0.015 mm

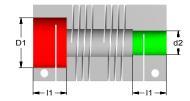
Bestellangaben

Ausführung (Stellschraube oder Klemmnabe), Grösse – Durchmesser d1 (mm) – Durchmesser d2 (mm)

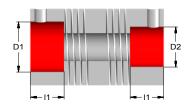
Beispiel: W7C 30 – 11 mm – 10 mm (grösserer Ø immer zuerst)

Drehmoment, Standardbohrungen d1, d2

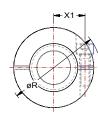

Steifigkeiten, Standardbohrungen d1, d2


Werte basierend auf d1 min.

Bremmomen	, Standardson	irangen a 1, az	Stemgkerten,	Standardbom	ungen un, uz	Werte busier	ägheits- a ioment J n 57 23 1 13 41 1 45 78 2 ,2 132 4 ,8 375 7 9,3 710 7 73 25 0 02 58 2	
kurzfristig (Nm)	dauernd einseitig (Nm)	dauernd reversierend (Nm)	Dreh- steifigkeit Ct (Nm/rad)	Radialfeder- steifigkeit (N/mm)	Axialfeder- steifigkeit (N/mm)	Massen- trägheits- moment J (x 10-6 kgm²)	Gewicht (g)	Schrauben- anzugs- moment (Nm)
1,4 1,3 1,2	0,7 0,65 0,6	0,35 0,33 0,3	30,2 22,0 15,5	473 368 285	124 81 55	0,67	23	1,0
2,6 2,5 2,3	1,3 1,3 1,2	0,7 0,7 0,6	57,9 44,1 35,8	500 418 346	81 58 42	2,13	41	1,0
5,7 5,5 5,1 4,7 4,3	2,9 2,8 2,6 2,4 2,2	1,5 1,4 1,3 1,2 1,1	101 86,8 69,9 57,3 44,1	662 571 490 417 354	95 74 58 46 38	6,45	78	2,1
9,5 8,9 8,3 7,7	4,8 4,5 4,2 3,9	2,4 2,3 2,1 2,0	143,3 119,4 98,8 81,9	613 538 473 412	86 71 58 49	16,2	132	4,7
23,0 22,0 21,0 20,0 19,0	11,5 11,0 10,5 10,0 9,5	5,8 5,5 5,3 5,0 4,8	358,2 301,6 272,9 238,8 204,7	952 865 783 707 636	124 108 93 81 71	81,8	375	7,7
37,0 35,0 33,0 31,0 30,0	18,5 17,5 16,5 15,5 15,0	9,3 8,8 8,3 7,8 7,5	622,9 521,0 409,3 358,2 318,4	1050 902 770 711 655	96 75 60 54 48	239,3	710	7,7
1,4 1,3 1,2	0,7 0,65 0,6	0,35 0,33 0,3	30,2 22,0 15,5	473 368 285	124 81 55	0,73	25	0,5
2,6 2,5 2,3	1,3 1,3 1,2	0,7 0,7 0,6	57,9 44,1 35,8	500 418 346	81 58 42	3,02	58	2,0
5,7 5,5 5,1 4,7 4,3	2,9 2,8 2,6 2,4 2,2	1,5 1,4 1,3 1,2 1,1	101 86,8 69,9 57,3 44,1	662 571 490 417 354	95 74 58 46 38	8,02	97	2,0
9,5 8,9 8,3 7,7	4,8 4,5 4,2 3,9	2,4 2,3 2,1 2,0	143,3 119,4 98,8 81,9	613 538 473 412	86 71 58 49	20,5	167	4,7
23,0 22,0 21,0 20,0 19,0	11,5 11,0 10,5 10,0 9,5	5,8 5,5 5,3 5,0 4,8	358,2 301,6 272,9 238,8 204,7	952 865 783 707 636	124 108 93 81 71	81,8	375	9,5
37,0 35,0 33,0 31,0 30,0	18,5 17,5 16,5 15,5 15,0	9,3 8,8 8,3 7,8 7,5	622,9 521,0 409,3 358,2 318,4	1050 902 770 711 655	96 75 60 54 48	239,3	710	16,0


Standard-Kupplung Serie DSAC (Aluminium)

Klemmnabe



Sackloch einseitig

Sackloch beidseitig

Berücksichtigung lichte Weite «R» ab kleinstem Sacklochdurchmesser

Standardausführung mit Bohrungshinterdrehung

D L2 S **Bohrungen** X (d1, d2)Min. Standard 31,8 M2,5 19,1 2,5 4,78 4,78 6 4,8 25,4 38,1 6,35 8 10 3,8 М3 6,35 7,9 9,7 (12,2 über 31,8 44,5 5,6 M4 7,95 10 12 16 Ø 14,0) 38,1 57,2 5,6 Μ4 9,53 9,53 12 16 12,9 63,5 12,7 16 19

Bohrung mit Sackloch 1)

Sackloch min./max. (D1, D2)	Ø R	11	X1
6,4 bis 9,9	21,6	6,3	7,0
10,1 bis 14,3	25,8	9,6	9,7

6,4 bis 9,9	21,6	6,3	7,0	
10,1 bis 14,3	25,8	9,6	9,7	
16,1 bis 17,0	36,5	11,2	12,2	
16,1 bis 23,0	42,7	14,5	15,3	
10 1 h:- 22 F	F7.6	17.2	20.2	

¹⁾ Techn. Daten siehe entsprechende Standard-Kupplungen mit grösster Bohrung

Klemmnabe

DSAC 075

DSAC 100

DSAC 125

DSAC 150

DSAC 200

Zulässiger Wellenversatz

– Winklig 3°

- Radial +/-0,25 mm - Axial +/-0,20 mm

Max. Drehzahl n = 10'000 min⁻¹

Zulässige Einsatztemperatur $T_{max} = 100$ °C

Material: Aluminium 7075-T6, Werkstoff-Nr. 3.4365

Toleranzen

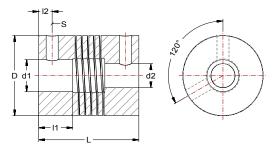
Bohrung: 0/+0.05 mm Welle (empfohlen): -0,005/-0,013 mm

Sonderabmessungen

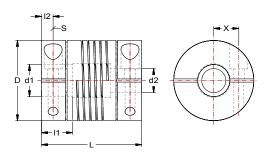
- Bohrungsdurchmesser kundenspezifisch, auch in Zollabmessungen (Kombination Zoll/ metrisch) möglich
- Eingeschränkte Bohrungstoleranz: 0/+0.015 mm

Bestellangaben

Grösse – Durchmesser d1 (mm) – Durchmesser d2 (mm)


Beispiel: DSAC 100 – 10 mm – 8 mm (grösserer Ø immer zuerst)

Drehmoment, Standardbohrungen d1, d2 Steifigkeiten, Standardbohrungen d1, d2 Werte basierend auf d1 min.


kurzfristig (Nm)	dauernd einseitig (Nm)	dauernd reversierend (Nm)	Drehsteifigkeit Ct (Nm/rad)	Axialfedersteifigkeit (N/mm)	Massen- trägheits- moment J (x 10 ⁻⁶ kgm²)	Gewicht (g)	Schrauben- anzugs- moment (Nm)
1,58 1,36	0,79 0,68	0,40 0,34	21,6 16,2	30 20	1,02	21	1,2
3,5 3,3 2,8	1,8 1,7 1,4	0,9 0,9 0,7	49,8 40,5 34,1	36 24 17	3,86	45	2,0
6,9 6,6 5,7 4,1	3,5 3,3 2,9 2,1	1,8 1,7 1,5 1,1	104,4 81,0 58,9 34,1	46 31 22 11	11,0	83	4,7
14,7 13,5 10,6	7,4 6,8 5,3	3,7 3,4 2,7	215,8 166,0 104,4	106 70 39	30,3	157	4,7
26,4 24,2 21,5	13,2 12,1 10,8	6,6 6,1 5,4	404,7 323,7 249,0	60 39 28	107,6	314	16,0

Standard-Kupplung Serie DS (Aluminium)

Stellschraube

Klemmnabe

Standardausführung mit Bohrungshinterdrehung

	D	L	L2	S	(d1,	nrungen , d2)	х
					Min.	. Standard	
Stellschraube							
DSR 075	19,1	19,1	2,4	M3	3	4 5 6,4	
DSR 100	25,4	25,4	3,8	M4	4	6 7 8 10 12	
DSR 112	28,6	28,6	3,6	M5	4	8 9 10 11 12 13	
DSR 125	31,8	31,8	4,0	M5	4	9 10 11 12 15	
DSR 150	38,1	38,1	5,0	M6	5	10 11 12 14 15 18	
DSR 200	50,8	50,8	7,0	M6	6	14 15 16 25	
Klemmnabe							
DSCR 075	19,1	22,9	3,1	M2,5	3	4 5 6,4	4,7
DSCR 100	25,4	31,8	3,8	М3	4	6 7 8 10 12	7,9
DSCR 112	28,6	38,1	3,8	М3	4	8 9 10 11 12 13	9,0
DSCR 125	31,8	38,1	5,0	M4	4	9 10 11 12 15	9,7
DSCR 150	38,1	41,3	5,9	M5	5	10 11 12 14 15 18	13,0
DSCR 200	50,8	50,8	6,7	M6	6	14 15 16	16,7

25

Zulässiger Wellenversatz

– Winklig 3°

- Radial +/-0,15 mm - Axial +/-0,15 mm

Max. Drehzahl n = 10'000 min⁻¹

Zulässige Einsatztemperatur $T_{max} = 100$ °C

Material: Aluminium 7075-T6, Werkstoff-Nr. 3.4365

Toleranzen

Bohrung: 0/+0.05 mm Welle (empfohlen): -0,005/-0,013 mm

Sonderabmessungen

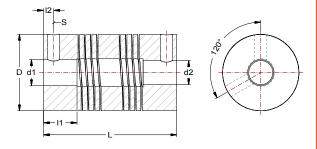
- Bohrungsdurchmesser kundenspezifisch, auch in Zollabmessungen (Kombination Zoll/ metrisch) möglich
- Eingeschränkte Bohrungstoleranz: 0/+0.015 mm

Bestellangaben

Ausführung (Stellschraube oder Klemmnabe), Grösse – Durchmesser d1 (mm) – Durchmesser d2 (mm)

Beispiel: DSR 112 – 12 mm – 10 mm (grösserer Ø immer zuerst)

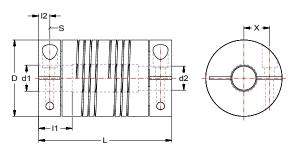
Drehmoment, Standardbohrungen d1, d2

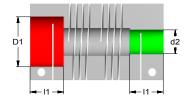

Steifigkeiten, Standardbohrungen d1, d2

Werte basierend auf d1 min.

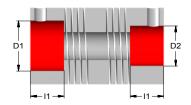
	, starraarasor		Jengherten,	mgkerten, standardsom ungen d. 1, d.2				
kurzfristig (Nm)	dauernd einseitig (Nm)	dauernd reversierend (Nm)	Dreh- steifigkeit Ct (Nm/rad)	Radialfeder- steifigkeit (N/mm)	Axialfeder- steifigkeit (N/mm)	Massen- trägheits- moment J (x 10 ⁻⁶ kgm ²)	Gewicht (g)	Schrauben anzugs- moment (Nm)
1,8 1,7 1,5	0,9 0,85 0,75	0,45 0,43 0,38	48 38 29	245 203 170	54 36 28	0,57	12	1,0
4,6 4,4 4,1 3,5 2,7	2,3 2,2 2,1 1,8 1,4	1,2 1,1 1,1 0,9 0,7	120 100 79 51 29,7	420 365 315 236 170	75 58 45 30 20	1,19	26	2,1
7 6,6 6,2 5,8 5,3 4,7	3,5 3,3 3,1 2,9 2,7 2,4	1,8 1,7 1,6 1,5 1,4 1,2	160 130 110 87 71 55	446 400 350 310 271 230	94 75 61 51 42 35	4,08	37	4,7
10,3 9,7 9,2 8,4 6,5	5,2 4,9 4,6 4,2 3,3	2,6 2,5 2,3 2,1 1,7	220 190 160 95 72	665 595 525 468 310	116 96 80 67 40	7,61	55	4,7
15 14,6 14 12,7 11,9 9,5	7,5 7,3 7,0 6,4 6,0 4,8	3,8 3,7 3,5 3,2 3,0 2,4	360 320 270 210 180 106	735 665 604 500 450 318	97 82 70 51 45 30	19,4	100	7,7
41,2 40,2 39 25	20,6 20,1 19,5 12,5	10,3 10,1 9,8 6,3	960 870 780 297	1120 1033 963 593	192 168 150 63	79,5	229	7,7
1,8 1,7 1,5	0,9 0,85 0,75	0,45 0,43 0,38	48 38 29	245 203 170	54 36 28	0,67	14	1,2
4,6 4,4 4,1 3,5 2,7	2,3 2,2 2,1 1,8 1,4	1,2 1,1 1,1 0,9 0,7	120 100 79 51 29,7	420 365 315 236 170	75 58 45 30 20	3,32	39	2,0
7 6,6 6,2 5,8 5,3 4,7	3,5 3,3 3,1 2,9 2,7 2,4	1,8 1,7 1,6 1,5 1,4 1,2	160 130 110 87 71 55	446 400 350 310 271 230	94 75 61 51 42 35	6,28	57	2,0
10,3 9,7 9,2 8,4 6,5	5,2 4,9 4,6 4,2 3,3	2,6 2,5 2,3 2,1 1,7	220 190 160 95 72	665 595 525 468 310	116 96 80 67 40	9,28	68	4,7
15 14,6 14 12,7 11,9 9,5	7,5 7,3 7,0 6,4 6,0 4,8	3,8 3,7 3,5 3,2 3,0 2,4	360 320 270 210 180 106	735 665 604 500 450 318	97 82 70 51 45 30	21,1	109	9,5
41,2 40,2 39 25	20,6 20,1 19,5 12,5	10,3 10,1 9,8 6,3	960 870 780 297	1120 1033 963 593	192 168 150 63	79,5	229	16,0

Standard-Kupplung Serie MC (Aluminium)

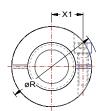

Stellschraube



Klemmnabe


D

Ĺ



Sackloch einseitig

Sackloch beidseitig

Berücksichtigung lichte Weite «R» ab kleinstem Sacklochdurchmesser

Standardausführung mit Bohrungshinterdrehung

L2	S	Bohrungen	Х	Sac
		(d1, d2)		mi

19 20 22

Min. Standard

25,4	44,5	3,8	M5	4	5 6 7
					8 10
31,8	60,2	5,1	M6	8	8 10 11 12
38,1	66,5	5,1	M6	8	8 10 11
					12
50,8	76,2	7,6	M6	9,5	10 12 14
					16
57,2	88,9	10,2	M6	9,5	10 12 14
					15 16 18

Bohrung mit Sackloch 1)

Sackloch min./max. (D1, D2)	lichte Weite Ø R	I1	X1
10,1 bis 16,0		9,4	
13,1 bis 19,0		13,0	
13,1 bis 25,4		16,8	
16,1 bis 38,1		19,3	
22,3 bis 44,4		21,8	
10,1 bis 14,3	28,2	9,4	9,7
13,1 bis 17,0	36,5	13,0	12,2
13,1 bis 23,1	42,7	16,8	15,3

Klemmnabe
MCAC 100

Stellschraube

MCA 100

MCA 125 MCA 150

MCA 200

MCA 225

MCAC 100	25,4	44,5	3,8	M3	4	5 6 7 8 10	7,9	10,1 bis 14,3
MCAC 125	31,8	60,2	5,6	M4	8	8 10 11 12	9,7	13,1 bis 17,0
MCAC 150	38,1	66,5	5,6	M4	8	8 10 11 12	13,0	13,1 bis 23,1
MCAC 200	50,8	76,2	6,6	M6	9,5	10 12 14 16	16,7	16,1 bis 32,5
MCAC 225	57,2	88,9	10,2	M6	9,5	10 12 14 15 16 18 19 20 22	20,0	22,3 bis 38,7

¹⁾ Techn. Daten siehe entsprechende Standard-Kupplungen mit grösster Bohrung

18,9

21,8

20,3

23,4

57,6

63,8

Zulässiger Wellenversatz

– Winklig 5°

Radial +/-0,75 mmAxial +/-0,25 mm

Max. Drehzahl n = 3'600 min⁻¹

Zulässige Einsatztemperatur $T_{max} = 100$ °C

Material: Aluminium 7075-T6, Werkstoff-Nr. 3.4365

Toleranzen

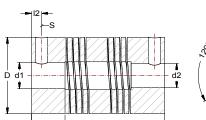
Bohrung: 0/+0.05 mm Welle (empfohlen): -0,005/-0,013 mm

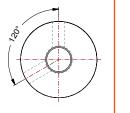
Sonderabmessungen

- Bohrungsdurchmesser kundenspezifisch, auch in Zollabmessungen (Kombination Zoll/ metrisch) möglich
- Eingeschränkte Bohrungstoleranz: 0/+0.015 mm

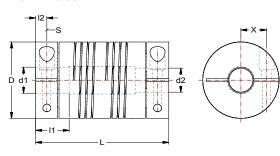
Bestellangaben

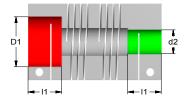
Ausführung (Stellschraube oder Klemmnabe), Grösse – Durchmesser d1 (mm) – Durchmesser d2 (mm)

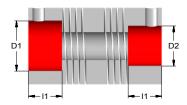

Beispiel: MCAC 225 – 18 mm – 14 mm (grösserer Ø immer zuerst)


Drehmoment, Standardbohrungen d1, d2 Steifigkeiten, Standardbohrungen d1, d2 Werte basierend auf d1 min.

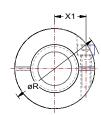
kurzfristig (Nm)	dauernd einseitig (Nm)	dauernd reversierend (Nm)	Drehsteifigkeit Ct (Nm/rad)	Axialfedersteifigkeit (N/mm)	Massen- trägheits- moment J	Gewicht (g)	Schrauben- anzugs- moment
					(x 10 ⁻⁶ kgm ²)		(Nm)
3,2 3,2 3,0 2,7 2,3	1,6 1,6 1,5 1,4 1,2	0,8 0,8 0,75 0,7 0,6	30 25 21 17 11	26 20 16 13 8	4,52	54	4,7
6,4 5,5 5,0 4,1	3,2 2,8 2,5 2,1	1,6 1,4 1,3 1,1	50 34 29 24	23 16 13 11	15,2	113	7,7
12,5 12,0 11,5 10,3	6,3 6,0 5,8 5,2	3,2 3,0 2,9 2,6	117 91 80 69	55 38 33 28	34,5	182	7,7
25,8 23,0 21,3 19,6	12,9 11,5 10,7 9,8	6,5 5,8 5,4 4,9	230 191 157 128	38 29 22 17	125,3	374	7,7
37,1 36,2 34,6 34,4 32,8 29,4 28,7 28,7 26,0	18,6 18,1 17,3 17,2 16,4 14,7 14,4 14,4 13,0	9,3 9,1 8,7 8,6 8,2 7,4 7,2 7,2 6,5	418 356 301 281 258 211 203 178 144	81 61 47 42 37 30 27 25 21	231,8	550	7,7
3,2 3,2 3,0 2,7 2,3	1,6 1,6 1,5 1,4 1,2	0,8 0,8 0,75 0,7 0,6	30 25 21 17 11	26 20 16 13 8	4,52	54	2,0
6,4 5,5 5,0 4,1	3,2 2,8 2,5 2,1	1,6 1,4 1,3 1,1	50 34 29 24	23 16 13 11	15,2	113	4,7
12,5 12,0 11,5 10,3	6,3 6,0 5,8 5,2	3,2 3,0 2,9 2,6	117 91 80 69	55 38 33 28	34,1	180	4,7
25,8 23,0 21,3 19,6	12,9 11,5 10,7 9,8	6,5 5,8 5,4 4,9	230 191 157 128	38 29 22 17	125,3	374	16,0
37,1 36,2 34,6 34,4 32,8 29,4 28,7 28,7 26,0	18,6 18,1 17,3 17,2 16,4 14,7 14,4 14,4 13,0	9,3 9,1 8,7 8,6 8,2 7,4 7,2 7,2 6,5	418 356 301 281 258 211 203 178 144	81 61 47 42 37 30 27 25 21	231,8	550	16,0


Standard-Kupplung Serie MC7 (Stahl, rostfrei)


Stellschraube



Klemmnabe



Sackloch einseitig

Sackloch beidseitig

Berücksichtigung lichte Weite «R» ab kleinstem Sacklochdurchmesser

Standardausführung mit Bohrungshinterdrehung

D	L	L2	S	Bohrungen (d1, d2)	Х
				(a1, a2)	
				Min Ctandard	

M5

М6

М6

М6

М6

Boh	rungen	X
(d1,	d2)	
Min.	Standard	

5 6 7

8 10

8 10 11 12 14 16

8 10 11

12 14 16

10 12 14 16 18 19

10 12 14

15 16 18 19 20 22

Bohrung mit	Sackloch 1)
Sackloch	lichte We

Sackloch min./max. (D1, D2)	lichte Weite Ø R	l1	X1
10,1 bis 16,0		9,4	
16,1 bis 19,0		13,0	
16,1 bis 25,4		16,8	
19,1 bis 38,1		19,3	
25,5 bis 44,4		21,8	
10,1 bis 14,3	28,2	9,4	9,7
16,1 bis 17,0	36,5	13,0	12,2

K	lemmnab	e

Stellschraube

MC7 100

MC7 125

MC7 150

MC7 200

MC7 225

Klemmnabe							
MC7C 100	25,4	44,5	3,8	M3	4	5 6 7 8 10	7,9
MC7C 125	31,8	60,2	5,6	M4	8	8 10 11 12 14* 16*	9,7
MC7C 150	38,1	66,5	5,6	M4	8	8 10 11 12 14 16	13,0
MC7C 200	50,8	76,2	6,6	M6	9,5	10 12 14 16 18 19	16,7
MC7C 225	57,2	88,9	10,2	M6	9,5	10 12 14 15 16 18 19 20 22	20,0

25,4

31,8

38,1

50,8

57,2

44,5

60,2

66,5

76,2

88,9

3,8

5,1

10,2

12 14 16		
10 12 14	16,7	19,1 bis 32,5
16 18 19		
10 12 14	20,0	25,5 bis 38,7
15 16 18		
19 20 22		

16,1 bis 23,0

16,8

18,9

21,8

15,3

20,3

23,4

42,7

57,6

63,8

¹⁾ Techn. Daten siehe entsprechende Standard-Kupplungen mit

^{*} ab Ø 14 lichte Weite «R» beachten

Zulässiger Wellenversatz

– Winklig 5°

Radial +/-0,75 mmAxial +/-0,25 mm

Max. Drehzahl n = 3'600 min⁻¹

Zulässige Einsatztemperatur $T_{max} = 315$ °C

Material: Stahl, rostfrei 17-4PH, Werkstoff-Nr. 1.4542

Toleranzen

Bohrung: 0/+0.05 mm Welle (empfohlen): -0,005/-0,013 mm

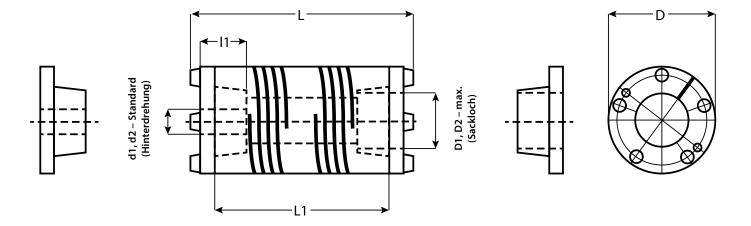
Sonderabmessungen

- Bohrungsdurchmesser kundenspezifisch, auch in Zollabmessungen (Kombination Zoll/ metrisch) möglich
- Eingeschränkte Bohrungstoleranz: 0/+0.015 mm

Bestellangaben

Ausführung (Stellschraube oder Klemmnabe), Grösse – Durchmesser d1 (mm) – Durchmesser d2 (mm)

Beispiel: MC7C 150 – 12 mm – 10 mm (grösserer Ø immer zuerst)


Drehmoment, Standardbohrungen d1, d2

Steifigkeiten, Standardbohrungen d1, d2

Werte basierend auf d1 min.

kurzfristig (Nm)	dauernd einseitig (Nm)	dauernd reversierend (Nm)	Drehsteifigkeit Ct (Nm/rad)	Axialfedersteifigkeit (N/mm)	Massen- trägheits- moment J (x 10 ⁻⁶ kgm²)	Gewicht (g)	Schrauben- anzugs- moment (Nm)
6,8 6,8 6,4 5,9 5,0	3,4 3,4 3,2 3,0 2,5	1,7 1,7 1,6 1,5 1,3	85 70 57 47 30	73 56 45 36 22	12,6	150	4,7
14,2 12 10,6 9,6 8,2 6,4	7,1 6,0 5,3 4,8 4,1 3,2	3,6 3,0 2,7 2,4 2,1 1,6	130 94 78,3 66 45 29	64 45 36 31 23 17	42,3	315	7,7
29,4 27,6 23,5 23,5 20,7 17,5	14,7 13,8 11,8 11,8 10,4 8,8	7,4 6,9 5,9 5,9 5,2 4,4	323 251 216 190 143 105	154 106 92 78 60 46	96,1	507	7,7
54,2 52,4 48,8 44,2 40,5 38,6	27,1 26,2 24,4 22,1 20,3 19,3	13,6 13,1 12,2 11,1 10,2 9,7	637 530 434 356 286 258	106 81 62 48 40 36	349,8	1044	7,7
83,3 83,3 81,4 78,2 78,2 69,0 64,2 62,1 59,2 51,5	41,7 41,7 40,7 39,1 39,1 34,5 32,1 31,1 29,6 25,8	20,9 20,9 20,4 19,6 19,6 17,3 16,1 15,6 14,8 12,9	1180 1000 848 758 708 595 547 494 328 295	227 171 132 118 104 84 76 70 59 45	646,6	1534	7,7
6,8 6,8 6,4 5,9 5,0	3,4 3,4 3,2 3,0 2,5	1,7 1,7 1,6 1,5 1,3	85 70 57 47 30	73 56 45 36 22	12,6	150	2,0
14,2 12 10,6 9,6 8,2 6,4	7,1 6,0 5,3 4,8 4,1 3,2	3,6 3,0 2,7 2,4 2,1 1,6	130 94 78,3 66 45 29	64 45 36 31 23 17	42,3	315	4,7
29,4 27,6 23,5 23,5 20,7 17,5	14,7 13,8 11,8 11,8 10,4 8,8	7,4 6,9 5,9 5,9 5,2 4,4	323 251 216 190 143 105	154 106 92 78 60 46	96,1	507	4,7
54,2 52,4 48,8 44,2 40,5 38,6	27,1 26,2 24,4 22,1 20,3 19,3	13,6 13,1 12,2 11,1 10,2 9,7	637 530 434 356 286 258	106 81 62 48 40 36	349,8	1044	16,0
83,3 83,3 81,4 78,2 78,2 69,0 64,2 62,1 59,2 51,5	41,7 41,7 40,7 39,1 39,1 34,5 32,1 31,1 29,6 25,8	20,9 20,9 20,4 19,6 19,6 17,3 16,1 15,6 14,8 12,9	1180 1000 848 758 708 595 547 494 328 295	227 171 132 118 104 84 76 70 59 45	646,6	1534	16,0

Standard-Kupplung Serie PF (Aluminium oder Stahl, rostfrei)

Anziehen von Schrauben:

Für einen korrekten Einbau müssen die Schrauben über Kreuz mit einem Drehmomentschlüssel gemäss den angegebenen Tabellenwerten schrittweise angezogen werden.

Standardausführung mit Bohrungshinterdrehung

Bohrung mit Sackloch

Aluminium	D	L	L1	l1	Zul. Wellen- versatz radial +/-	Bohrungen standard min. (d1, d2)	Bohrungen standard max. (d1, d2)	Sackloch min./max. (D1, D2)
PFA 200	50,8	101,6	79,2	20,8	0,65	12	22	22,1 bis 25,0
PFA 250	63,5	120,7	94,0	25,4	0,75	12	28	28,1 bis 35,0
PFA 300	76,2	139,7	113,5	28,7	0,85	16	35	35,1 bis 44,0
Stahl, rostfrei								
PFS 200	50,8	101,6	79,2	20,8	0,65	12	22	22,1 bis 25,0
PFS 250	63,5	120,7	94,0	25,4	0,75	12	28	28,1 bis 35,0
PFS 300	76,2	139,7	113,5	28,7	0,85	16	35	35,1 bis 44,0

Zulässiger Wellenversatz

– Winklig 4°

Radial siehe TabelleAxial +/-0,5 mm

Max. Drehzahl n = 6'000 min⁻¹

Material: Aluminium 7075-T6, Werkstoff-Nr. 3.4365 Zulässige Einsatztemperatur $T_{max} = 100\,^{\circ}\text{C}$

Stahl, rostfrei 17-4PH, Werkstoff-Nr. 1.4542 Zulässige Einsatztemperatur $T_{max} = 315 \, ^{\circ}\text{C}$

Toleranzen

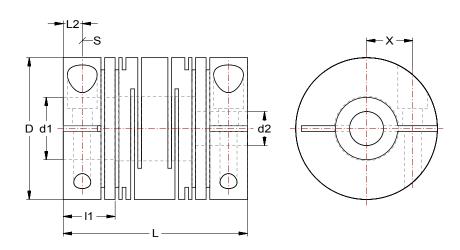
Bohrung: 0/+0.05 mm Welle (empfohlen): -0,005/-0,013 mm

Sonderabmessungen

- Bohrungsdurchmesser kundenspezifisch, auch in Zollabmessungen (Kombination Zoll/ metrisch) möglich
- Eingeschränkte Bohrungstoleranz:
 0/+ 0.015 mm

Bestellangaben

Ausführung (Stellschraube oder Klemmnabe), Grösse – Durchmesser d1 (mm) – Durchmesser d2 (mm)


Beispiel: PFA 250 – 22 mm – 16 mm (grösserer Ø immer zuerst)

Drehmoment, Standardbohrungen d1, d2

Steifigkeiten, Standardbohrungen d1, d2 Werte basierend auf d1 min.

				-,				
kurzfristig (Nm)	dauernd einseitig (Nm)	dauernd reversierend (Nm)	Dreh- steifigkeit Ct (Nm/rad)	Axialfeder- steifigkeit (N/mm)	Massen- trägheits- moment J (x 10 ⁻⁶ kgm²)	Gewicht (g)	Schrauben	Schrauben- anzugs- moment (Nm)
28	14,0	7	243	47	132,8	390	4 x M5	6,2
55	27,5	14	460	57	396,7	760	5 x M6	10,0
95	47,5	24	797	74	907,4	1'220	5 x M6	10,0
60	30,0	15	672	134	357,6	1'050	4 x M5	7,3
115	57,5	29	1'273	154	1'055	2'020	5 x M6	12,0
205	102,5	51	2'204	200	2'469	3'320	5 x M6	12,0

Standard-Kupplung Serie X (Aluminium)

Standardausführung mit Bohrungshinterdrehung

Klemmnabe	D	L	L2	l1	S	Zul. Wellenversatz	Bohrungen standard, min. (d1, d2)	Bohrungen standard, max. (d1, d2)	Х
XCA 15	15*	24	3,0	6,3	M2,5	0,10	3	6	5,0
XCA 20	20**	28	3,8	7,9	M3	0,10	4	8	5,4 6,21)
XCA 25	25	30	3,8	8,0	M3	0,15	6	10	7,7
XCA 30	30	38	5,0	10,3	M4	0,15	9	12,5	9,1
XCA 40	40	60	5,8	15,7	M5	0,20	10	17	12,5
XCA 50	50	65	6,7	17,0	M6	0,20	12	22	16,3

Freiraum für Innensechskant-Schrauben: Ø 17,5 mm (lichte Weite) * Freiraum für Innensechskant-Schrauben: Ø 21,8 mm (lichte Weite), für Bohrungen d1 bzw. d2 grösser Ø 6,35 mm

1) ab Bohrungs-Ø 6,35

Zulässiger Wellenversatz

– Winklig 3°

Radial siehe TabelleAxial +/-0,25 mm

Max. Drehzahl n = 10'000 min⁻¹

Zulässige Einsatztemperatur $T_{max} = 100 \, ^{\circ}C$

Material: Aluminium 7075-T6, Werkstoff-Nr. 3.4365

Toleranzen

Bohrung: 0/+0.05 mm Welle (empfohlen): -0,005/-0,013 mm

Sonderabmessungen

- Bohrungsdurchmesser kundenspezifisch, auch in Zollabmessungen (Kombination Zoll/ metrisch) möglich
- Eingeschränkte Bohrungstoleranz: 0/+0.015

Bestellangaben:

Grösse – Durchmesser d1 (mm) – Durchmesser d2 (mm)

Beispiel: XCA 30 – 12 mm – 9 mm (grösserer Ø immer zuerst)

Zulässige Drehmomente

Steifigkeiten, Standardbohrungen d1, d2

Werte basierend auf d1 min.

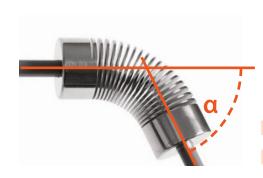
dauernd reversierend	Drehsteifigkeit Ct	Massen-	Gewicht (g)	Schrauben-
(Nm)	(Nm/rad)	trägheits-		anzugs-
		moment J		moment
		(x 10 ⁻⁶ kgm ²)		(Nm)
0,3	51	0,27	9,2	1,1
0,5	125	1,04	20	2,0
1,0	261	2,73	33	2,0
2,0	441	7,36	60	4,7
5,0	868	37,6	177	9,5
10,0	1'976	101,0	306	16,0

HELI-CAL®-Flexures – Universal Joints

Ein Universal Joint (Universal-Gelenk), auch «U-Joint» genannt, ist ein mechanisches Verbindungselement zwischen zwei nicht fluchtenden, rotierenden Wellen.

Die bekannteste Art eines «U-Joint» ist das Kreuzgelenk.

Im Gegensatz zum einteiligen «U-Joint» bedingt die mehrteilige Konstruktion dieser Verbindungen gewöhnlich eine Schmierung der beweglichen Teile und erfordert entsprechende Wartungsintervalle. Die Verbindung nutzt sich mit der Zeit ab; das Verdrehspiel innerhalb der Verbindung steigt und die Präzision



lässt nach. Hier hat das wartungsfreie, einteilige «U-Joint» klare Vorteile.

Ebenso eignet es sich zur Kompensation von axialen und radialen Verlagerungen und garantiert dabei eine konstante Winkelgeschwindigkeit an der An- und Abtriebswelle. Es sind Winkelverlagerungen bis zu 90° möglich!

Da die U- Joints spanabhebend hergestellt werden, besteht eine grosse Auswahl hinsichtlich Material und Endenbearbeitung.

Universal-Joints sind immer kundenspezifische Produkte. Sie definieren die Anforderungen, wir erarbeiten Ihnen die massgeschneiderte Lösung.

Richtwerte für den Einsatz von U-Joints

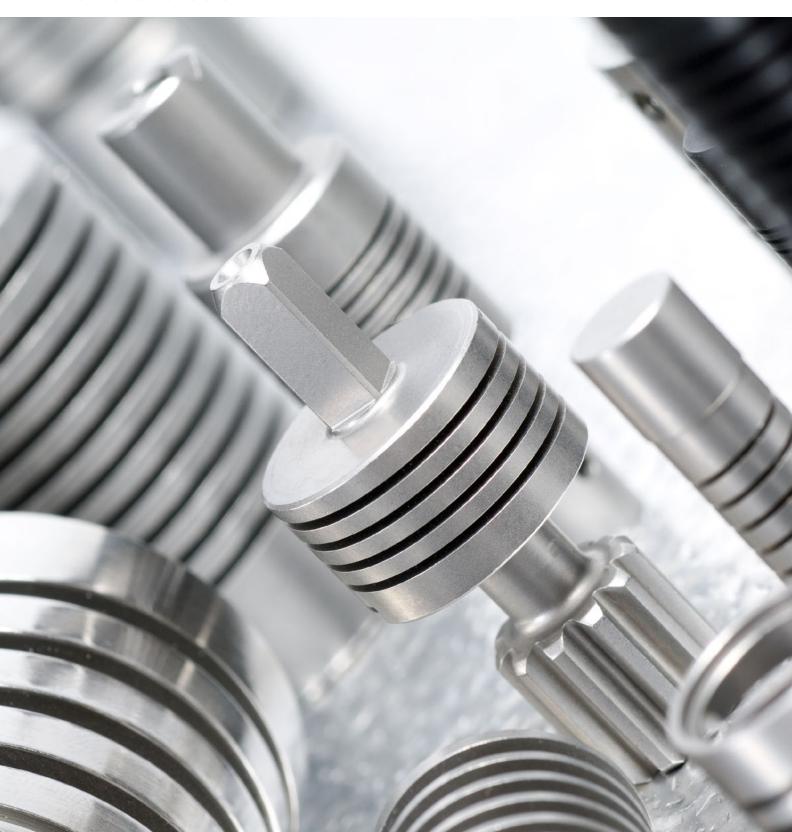
Winkelversatz α bis	Durchmesser min.	Durchmesser max.	Drehmoment bis
30°	9,5 mm	58mm	20 Nm
45°	9,5 mm	58mm	10 Nm
90°	9,5 mm	58mm	2 Nm

Ihre Ideen sind unsere Herausforderung, Ihre Kreativität unser Ansporn

Fragebogen für kundenspezifische HELICAL Kupplungen und U-Joints

	Kunde:		l				
Referenz	Anschrift: Abteilung:						
			Ihre	ure Ref. Unsere Ref.	Unsere Ref.		
	z.Hd. von:						
	Tel.:		Fax:				
			E-Mail:				
Menge/Preis	Bedarf (Stk.): gewünschter Termin:		Pre	reisvorstellung: anbieten			
				reisvorstellung: anbieten techn. Vorschlag Zeichnung			
				Zeichnung Prototyp			
	Bitte genau beantworten. Sofer		rn P	n Platz nicht reicht, Skizze beilegen			
Einsatz-Daten							
	0	b		a Ø mm			
		c fortlaufend d Reversierbetrieb			schreibung strieb		
		e Stop-Startx/sec.					
	5.1	f min ⁻¹ g von Hand		welle welle welle			
	Drehmoment 2	ent a NennmomentNm b Max. MomentNm		Bohrungstoleranz	nm oleranz		
	Verlagerung	erlagerung		a üblich +0,05 mm			
			ē	0,00 mm			
		b radialmm	enab	b genau +0,015 mm / — — mm \ 0,00 mm			
	c axial-Kompression/Extensionmm		Well	Befestigung —			
	d Keine Überschneidung, wenn ja, Skizze beifügen. Verdrehsteifigkeit Nm/rad				- I		
	4		-sgur	b 2 Halteschrauben 120° b	⊣		
	Trägheitsmoment	kg cm²	Kupplungs-	c 2 Halteschrauben 90° c d 1 Halteschraube d	⊣ 1		
	5	kleiner gleich grösser	조	e Zylinderstiftemm e	1		
	Gewicht	g		f Passstiftemm f]		
		kleiner gleich grösser		g Passfedernut g			
	Betriebs- a Temperatur° Fahrenheit bedingungen			TypAbmessungen			
	•	b Temperatur° Celsius c Korrosion		h andere Hinweise h]		
		d Schmutz					
Beilagen: ☐ Zeichnung ☐ Einbausituation ☐ Skizze							
BEMERKUNGEN							

Sumpfstrasse 7 6300 Zug


Telefon +41 41 748 09 00 Telefax +41 41 748 09 09 info@ringspann.ch www.ringspann.ch

RINGSPANN®

MACHINED SPRINGS

Präzisionsfedern

Kundenspezifische, HELICAL Präzisionsfedern

Einleitung

Der Begriff «Machined Springs» führt Sie zur HELICAL Federtechnik. Die wörtliche Übersetzung aus dem Amerikanischen bedeutet «maschinengefertigte Feder». In den nachfolgenden Erläuterungen haben wir uns für die amerikanische Bezeichnung «Machined Springs» entschieden.

Allgemein bekannt sind Federn in der Technik als Normteile, die kalt- oder warmgeformt aus legierten oder unlegierten Federstählen mit rundem, quadratischem oder rechtwinkligem Querschnitt hergestellt werden. Weniger bekannt sind hingegen spanabhebende Federn aus einem Stück. Diese Machined Springs können, wie die Standard-Federn, mit Druck-, Zug- und Torsionskräften sowie Biegespannungen belastet werden. Das Raffinierte dabei ist jedoch, dass diese Federn eine optimal aufeinander abgestimmte Kombination der verschiedenen Federwerte zulassen.

Die herausragenden Vorteile der Machined Spring gegenüber gewickelten Federn sind sehr präzise und konstante Federraten bis zu +/- 0,1% bei einer Wiederholbarkeit von bis zu 1%. Die Herstellung erfolgt aus Vollmaterial, z.B. aus einer Stange oder

einem Rohr. Darin wird eine wendelförmige Nut geschnitten. Dieses Bearbeitungsverfahren eignet sich besser als das Wickeln einer Feder, denn es erzeugt im Gegensatz zum Umformen keine interne «künstliche» Spannung, sondern nur die natürliche Materialspannung. Die Feder erhält dadurch eine lineare Federkennlinie mit hoher Wiederholgenauigkeit und Dauerfestigkeit.

Dazu kommt, dass die spanabhebend gefertigten Präzisionsfedern weit mehr Gestaltungsmöglichkeiten und Vorteile bieten:

- vielfältige Befestigungsmöglichkeiten (hohe Festigkeit/Lebensdauer, da keine gebogenen Federenden)
- Integration von Funktionen
- grosse Materialvielfalt
- mehrgängige und / oder gegenläufige Wendellösung zur Vermeidung der Ausknickung oder Rotation der freien Federenden

Bild 2: Machined Springs

Machined Springs mit verschiedenen Anschlüssen und Federraten

Anwendungsbeispiel «Sonder-Druckfeder»

Neue Lösung

Machined Spring aus 2 Bauteilen

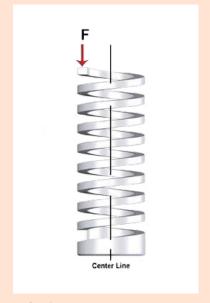
Vorteile der neuen Lösung:

- Höhere Genauigkeit und Funktionssicherheit
- Nur ein Bauteile für die Hauptfunktion «Druckfeder»
- Minimierung von Beschaffungsaufwand und von Lagerhaltung

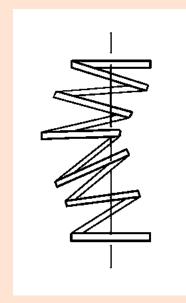
Weitere Beispiele finden Sie ab Seite 44 «Konstruktionsmerkmale».

Ursprüngliche Lösung:

Druckfeder aus 4 Bauteilen

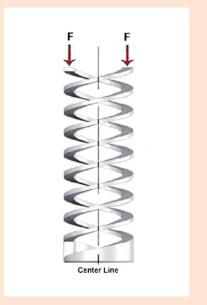

Technische Grundlagen

Mehrgängige Federn versus eingängige Spiralfedern

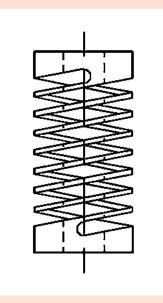

Herkömmliche Zug- und Druckfedern wie auch eingängige spanabhebend bearbeitete Federn bestehen aus einer kontinuierlichen Spirale, welche auf einer Seite anfängt und auf der anderen endet. Eine Krafteinwirkung auf eine solche Feder erfolgt nur über einen Punkt und bewirkt ein Kippmoment. Als Hebelarm wirkt dabei der Abstand zwischen der Federlängsachse und der Mittellinie der Spirale. Lange Schraubendruckfedern können darum bei Belastung ausknicken, siehe Bild 3. Dieses «Buckling» ist ein gefährlicher Zustand, da die Feder ihre Kraft nicht mehr überträgt und dadurch sehr schnell ausfällt.

Um eine seitliche Bewegung oder Krümmung einer eingängigen Feder zu vermeiden, muss die Feder ab einer gewissen Länge auf einem Dorn oder in einer Hülse geführt werden. Dadurch kann jedoch Reibung entstehen, welche die einwandfreie Funktion und die Lebensdauer der Feder negativ beeinflusst. Dies erfordert oft eine Schmierung der Bauteile, welche aber je nach Verwendung nicht erwünscht ist.

Bei mehrgängigen Federn wird der Druck resp. Zug auf mehrere Punkte verteilt, was zu einer gleichmässigen parallelen Kraftverteilung zur Mittelachse der Feder führt, siehe Bild 4. Je mehr Gänge die Feder besitzt, umso präziser wird die Parallelität bei Kompression oder Ausdehnung umgesetzt.



Krafteinleitung



Unerwünschtes seitliches Ausknicken von eingängigen Druckfedern

Bild 3: Buckling

Krafteinleitung

Kein unerwünschtes seitliches Ausknicken mit einer zwei- oder mehrgängigen Machined Spring

Bild 4: Gleichmässige parallele Kraftverteilung

Zur Veranschaulichung ist in Bild 5 und 6 eine zwei- bzw. dreigängige Feder dargestellt

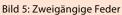


Bild 6: Dreigängige Feder

Bild 7: Sonderfeder

Sowohl links- und rechtsgängige Wendel können in einer Feder gleichzeitig hergestellt werden.

Dadurch wird eine unerwünschte Verdrehung am Federende verhindert.

Dynamische Eigenschaften der Machined Springs

In Abbildung 8 sind die X-, Y- und Z-Achsen sowie die Rotationsachsen ROTX, ROTY und ROTZ dargestellt. Eine gewickelte Feder nutzt bei der Krafteinleitung diese möglichen sechs Freiheitsgrade gleichzeitig, was zu einer undefinierten Verformung führt. Demgegenüber bewegt sich die zwei- oder mehrgängige Machined Spring in der für die Anwendung erforderlichen und gewünschten Ebene, d.h die Nutzung der Freiheitsgrade lässt sich genau bestimmen. Mehrgängige Federn lassen sich unter Belastung gezielt verformen und nehmen bei Entlastung wieder die ursprüngliche Form an. Damit ist es möglich, mit einer mehrgängigen Feder ein auf alle sechs Achsen individuell und exakt abgestimmtes Bauteil herzustellen, wobei gleichzeitig Druck-, Zug- und Torsionskräfte aufgenommen werden können.

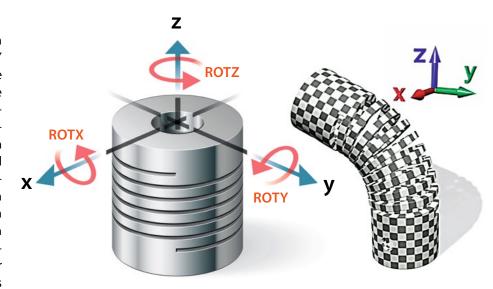
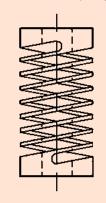


Bild 8: Darstellung der Freiheitsgrade

Höchste Präzision in allen Bereichen

Das spanabhebende Herstellverfahren der HELICAL- Kupplungen erzeugt keine inneren Spannungen, welche zur Krafteinleitung überwunden werden müssen. Ebenso sind durch die präzise Herstellung alle Federwindungen aktiv. Deshalb verformt sich die Feder während der Belastung gleichmässig und nimmt bei Entlastung wieder die ursprüngliche Form an. Dies ergibt lineare Federkennlinien.

Die Federrate einer gewickelten Feder liegt in einem Toleranzfeld von +/- 10 %. Machined Springs hingegen liegen im Bereich von +/- 5 % und können kundenspezifisch als sog. Präzisionsfedern mit einer Toleranz von +/- 1 % hergestellt werden.


Eine hohe Federpräzision mit hundertprozentig linearer Federkennlinie ist gerade bei sehr kleinen Hubbewegungen in hochpräzisen Regelsystemen gefragt. Hier wurde auch schon ein Projekt realisiert, bei welchem HELICAL eine Federrate von +/- 0.1% herstellten konnte.

Gewickelte Feder

Die gewickelte Feder erreicht in der Startphase der Verformung keine lineare Federkennlinie aufgrund der halben, inaktiven Windung an den Federenden. Die Druckfeder muss für einen linearen Kraftverlauf vorgespannt werden.

Machined Spring

Alle Windungen sind aktiv (= frei) und lassen sich verformen

Die Machined Spring weist eine lineare Federkennlinie auf, da sich alle Windungen frei bewegen können.

Bild 9: Auswirkung des Feder-Prinzips auf die Kennlinie

Eine breite Auswahl an Werkstoffen steht zur Verfügung

Entscheidend für die Auswahl des Federwerkstoffs ist das Elastizitätsmodul bzw. das Gleitmodul. Diese Werkstoffkenngrössen drücken das Verhältnis zwischen Spannung und Dehnung aus und sollten einen möglichst hohen Wert aufweisen.

Je nach Anwendung sind zusätzlich folgende Werkstoff-Eigenschaften für Federn entscheidend:

 Hohe zulässige Spannungen auch bei erhöhten Temperaturen ohne grössere Kraftverluste (geringe Relaxation)

- Hohe Dauerschwingfestigkeit (feinkörniges Gefüge, frei von Verunreinigungen)
- Möglichst gleitfähige Oberfläche
- Schutz gegenüber Korrosion
- Ggf. elektrisch leitend oder antimagnetisch

Üblicherweise werden gewickelte Federn aus Federstahldraht nach EN 10270-1 gefertigt.

Demgegenüber ist das Materialangebot zur Herstellung einer Machined Spring wesentlich breiter, da der Werkstoff kein Verformungsvermögen besitzen muss. Es muss lediglich eine maschinelle Zerspanung möglich sein. Dadurch können z.B. leichte Aluminiumfedern oder elektrisch isolierende Federn aus Kunststoff oder sogar hochfeste Titanfedern hergestellt werden.

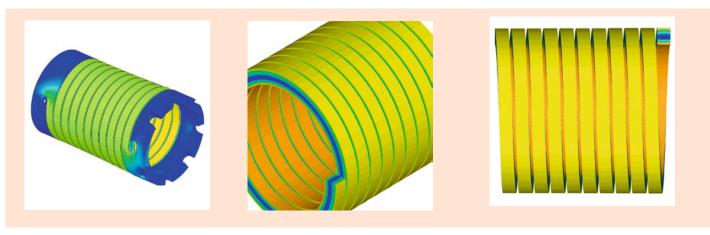


Bild 10: FEM-Analyse

Einsatz der Finite-Elemente-Methode (FEM)

Mittels Einsatz der FEM-Analyse können präzise Aussagen zur Festigkeit und zur Lebensdauer spezifischer Anwendungen gemacht werden. Bild 10 zeigt die Analyse einer sehr speziellen, kundenspezifischen Torsionsfeder, welche auf einem Prüfstand zum Test von Sicherheitsgurten eingesetzt und hochdynamisch belastet werden kann.

Richtwerte für den Einsatz der Machined Springs

Druck- und Zugfedern:

- Druck- bzw. Zugkraft von 2 bis 4'500 N
- Aussendurchmesser von 1,5 bis 80 mm
- Längen von 6 bis 500 mm

Torsionsfedern:

- Torsionsmoment von 5 bis 225 Nm
- Verdrehwinkel von 1 bis 360°
- Aussendurchmesser von 1,5 bis 80 mm
- Längen von 6 bis 500 mm

Technische Daten

- Torsionsmoment 80 Nm +/- 4 Nm bei 180° «Aufwindung»
- Stahl INOX. CC 455 HT

Torsionsfeder für Sicherheitsgurt-Prüfstand

Konstruktionsmerkmale

Bild 11: Gewickelte Zug- und Tosionsfedern

Die richtige Wahl der Befestigung

Gewickelte Spiralfedern werden normalerweise mit angelegtem Draht, geschliffenen Enden, Zapfen, Ringen oder Hacken befestigt, welche aus dem Federstahl selbst hergestellt wurden, siehe Bild 11.

Die kleinen Biegeradien verursachen übermässige Materialbeanspruchungen und sind häufige Ursache für das Versagen des Bauteiles. Diese Befestigungspunkte am Federanfang bzw. Federende sind nicht in der Lage, die Drehmomente, welche innerhalb der Feder bei Druck-, resp. Zug- oder Tor-

sionsbeanspruchung entstehen, in die angrenzenden Bauteile einzuleiten. Diese Momente verursachen jedoch Biegung unter Last.

Im Gegensatz dazu sind Verbindungen spanabhebend hergestellter Federn auf das Nötigste reduziert und können dort verstärkt werden, wo es erforderlich ist. Nicht abgestützte Momente werden beispielsweise durch die Verwendung von Doppelzapfen, Kreuzschlitzen, Nuten, Befestigungsflanschen usw. verhindert.

Mit diesen integrierten Anschlüssen erhöht sich die Lebensdauer der Feder und der Einbauraum kann optimiert werden. Oftmals werden dabei zugleich die Produktions- und Montagekosten reduziert.

In den Bildern 12 bis 14 sind Beispiele der vielfältigen Anschlussmöglichkeiten dargestellt.

Bild 12: Machined Springs als Zug-, Druck- und Torsionsfedern

Bild 13 und 14: Zug-Druckfedern (links) und Torsionsfedern (rechts)

Erhöhung der Lebensdauer

Eine erhöhte Lebensdauer einer Machined Spring kann u. a. mittels folgenden Massnahmen erreicht werden:

Sogenannte Stressentlastungsbohrungen am Wendelauslauf reduzieren die Kerbspannung, siehe Bild 15. Je grösser die Bohrung desto geringer die Spannung und desto höher die Anzahl möglicher Lastwechsel.

Durch «Verdicken» des Wendelauslaufs kann die Festigkeit der Feder im kritischen Bereich erhöht werden, was sich positiv auf die Lebensdauer auswirkt, siehe Bild 16.

Eine weitere Möglichkeit zur Erhöhung der Lebensdauer ist die Oberflächenvernicklung, die eine hohe Härte, optimale Abriebsfestigkeit und einen hervorragenden Korrosionsschutz gewährleistet.

Bild 15: Machined Spring mit Stressentlastungsbohrungen

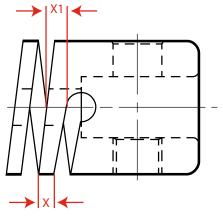


Bild 16: Verdickter Wendelauslauf, X1 grösser X

Integrierte Funktionen – Reduktion von Bauteilen

Im Zusammenhang mit den vielfältigen Möglichkeiten der Befestigungen bzw. der Feder-Anschlüsse können gleichzeitig verschiedene Funktionen im Bauteil integriert werden. In den Bildern 17 bis 19 sind entsprechende Beispiele dargestellt.

Bild 18: links herkömmliche Zugfeder aus vier Bauteilen, rechts die neue aus einem Bauteil

Bild 17: Druckfeder, links aus 3 Bauteilen, rechts die Neuheit aus nur einem Bauteil

Bild 19: links die herkömmliche Druckfeder Montageeinheit aus 15 Bauteilen, rechts jene aus einem Bauteil. Ein rechts- und ein linksgängiger Wendel verhindern das Verdrehen bei der Kompression.

Vorteile der «integrierten Funktionen»:

Ihre Gesamtkosten werden reduziert

- Weniger Bauteile für eine Funktion
- Kürzere Monatgezeiten
- Minimierung des Beschaffungsaufwands

Ihre Sicherheit wird erhöht

- Nur ein Bauteil eindeutige Schnittstellen
- Ein Ansprechpartner für mehrere Funktionen – Erhöhung der Systemsicherheit und des Qualitätsstandards

Ihre Lager- und Administrationskosten werden optimiert

- Weniger Bauteile an Lager
- Minimierung von Bestellungen und Lieferanten

Ihr Entwicklungsaufwand wird verringert

- Auf Wunsch erstellen wir Ihnen kostenlos Konstruktionsvorschläge
- Nutzen Sie unsere Berechungs-Software

Zusammenfassung – Facts & Figures

Bild 20: Standard Feder

Standard Feder - die Basis

- Nur als eingängig gewickelte Ausführung verfügbar
- Kundenspezifische Befestigungen sind eingeschränkt und nach dem Wickelprozess herstellbar
- Exakte Innen- bzw. Aussendurchmesser erfordern einen nachträglichen Schleifprozess
- Verschiedene Federarten (Druck, Zug, Torsion) sind nicht kombinierbar
- Der Wendel besitzt eine leistungsbeeinflussende Eigenspannung
- In einem Produktionslos können die Federraten in einem gewissen Masse variieren
- Eingeschränkte Werkstoffauswahl
- Veränderliche Parallelität und Rechtwinkligkeit während der Belastung (knicken)
- Integrierte Funktionen sind nur schwierig und über verschiedene Bauteile realisierbar

Bild 21: Machined Spring

Machined Spring - die Vorteile

- Ein-, zwei- und dreigängige Ausführungen
- Integrierte, kundenspezifische Befestigungen in nahezu beliebigerer Ausführung
- Die maschinelle Einstück-Fertigung garantiert die präzise Einhaltung der Kundenanforderungen
- Vorgegebene Druck-, Zug- oder Torsionskennlinien sowie sämtliche Verlagerungswerte werden präzise abgestimmt – eine Kombination dieser Parameter ist möglich
- Die minimale Eigenspannung im Wendel ist vernachlässigbar
- Die Federraten im Produktionslos sind identisch,
 Wiederhohlgenauigkeiten bis zu 1% sind herstellbar
- Hohe Vielfalt bei der Materialwahl: Stahl, Aluminium, Titan, Kunststoff usw.
- Hohe Leistung und Zuverlässigkeit durch die perfekte Parallelität und Rechtwinkligkeit der Feder
- Ein Hersteller für die komplette Funktion (Feder und Anbauteile; integrierte Funktionen)

In Druck-, Zug- und Torsionsfedern steckt weit mehr als nur gespeicherte Energie. Spezielle Anforderungen an die Einbindung der Feder in die Konstruktion, an den Werkstoff, die Oberfläche usw. erfordern immer neue, individuell auf die Kundenbedürfnisse abgestimmte Entwicklungen.

HELICAL Products Ltd. liefert seit 1979 hochbelastbare Machined Springs erfolgreich in die verschiedensten Branchen:

Medizinaltechnik

Laborgeräte

Flugzeugindustrie

Motorsport

Kommunikationstechnik

Weltraumtechnik

Lebensmittelindustrie

Messtechnik

Robotik

Nutzen Sie das über 30-jährige Know-how auch für Ihre spezifische Anwendung.

Fragebogen für kundenspezifische HELICAL Druck- und Zugfedern

	Kunde:	7							
	Anschrift:								
nz				I					
Referenz	Abteilung: z.Hd. von:		Ihre Ref.			Unsere Ref.			
			Four						
	Tel.:			Fax: E-Mail:					
Menge/Preis	Bedarf (Stk.): gewünschter Termin:		Preisvorstellung:		9	anbieten			
				j		techn. Vorschlag			
					Veranlassung	Zeichnung			
						Prototyp			
		Bitte genau beantworten. Sofern Platz nicht reicht, Skizze beilegen							
	Sonder- Federlänge L0 Sonder- befestigung links (optional) (optional)			ür Anwendungen mit					
			a) hoher Radial-Verlagerung						
			b) Schräg-Verlagerung (dreidimen-						
			sional)						
			Bitte um Rücksprache mit der RINGSPANN Technik						
Geometrie / Material									
				Г			-, l		
				Max. Federweg (mm)			4		
			Druck- bzw. Zugkraft, 1. Punkt (N)						
	Federlänge L0 (mm)	en		Federweg, 1. Punkt (mm)					
	Gesamtlänge L (mm)			Druck- bzw. Zugkraft, 2. Punkt (N)				
	Material Umgebungstemperatur (° C)	nisch		Federweg, 2. Punkt (mm) Toleranz Druckkraft (%)					
		Techi	Druck- bzw. Zugkraft, 2. Punkt Federweg, 2. Punkt (mm) Toleranz Druckkraft (%) (10 % = Standard)				_		
	Umgebung korrosiv (J/N)		Anwendung statisch o. dynam		sch (c	i/s)	4		
				Frequenz (Hz)			_		
Bei	agen:			Lebensdauer bzw. Anzahl Lastw (ein LW = Belastung und Entlast		el			
☐ Zeichnung ☐ Einbausituation ☐ Skizze									
BEMERKUNGEN									
1									

Sumpfstrasse 7 6300 Zug

Telefon +41 41 748 09 00 Telefax +41 41 748 09 09 info@ringspann.ch www.ringspann.ch

Fragebogen für kundenspezifische HELICAL Torsionsfedern

	Kunde: Anschrift: Abteilung: z.Hd. von:									
Referenz			Ref.	Unsere Ref.						
Re										
	Tel.:	Fax: E-Mail:								
Menge/Preis	Bedarf (Stk.): gewünschter Termin:		vorstellung:	anbieten \square						
			vorstellung:	techn. Vorschlag						
Mer			Vera	Prototyp						
	Bitte genau beantworten. Sofe	rn Pla	atz nicht reicht, Skizze beilegen							
Geometrie / Material	Sonder- befestigung links (optional) Torsionsmoment, Drehrichtung Gesamtlänge L Torsionsmoment Drehrichtung a, b oder beidseitig Aussendurchmesser D (mm) Innendurchmesser d (mm) Federlänge L0 (mm) Gesamtlänge L (mm) Material Umgebungstemperatur (°C) Umgebung korrosiv (J/N)	Technische Daten	Torsionsmoment, 1. Punkt (Nm) Verdrehwinkel, 1. Punkt (°) Torsionsmoment, 2. Punkt (°) Toleranz Torsionsmoment (%) (10 % = Standard) Anwendung statisch o. dynamisch (Frequenz (Hz) Lebensdauer bzw. Anzahl Lastwech (ein LW = Belastung und Entlastung)	sel						
	onigebong konosiv (J/N)	eilagen: ☐ Zeichnung ☐ Einbausituation	□ Skizze							
BEMERKUNGEN LI SKIZZE										

Sumpfstrasse 7 6300 Zug

Telefon +41 41 748 09 00 Telefax +41 41 748 09 09 info@ringspann.ch www.ringspann.ch

RINGSPANN®

RINGSPANN AG

Sumpfstrasse 7 6300 Zug

Telefon: +41 41 748 09 00

info@ringspann.ch www.ringspann.ch

Antriebstechnik

Freiläufe (Katalog 84)

Rücklaufsperren

Zur automatischen Rücklaufsicherung von Förderbändern, Elevatoren, Pumpen und Gebläsen.

Überholfreiläufe

Zum automatischen Zu- und Abkuppeln von Antrieben.

Vorschubfreiläufe

Für schrittweisen Materialvorschub

Gehäusefreiläufe

Zum automatischen Zu- und Abkuppeln von Mehrfachantrieben bei Anlagen im Dauerbetrieb.

Käfigfreiläufe

Zum Einbau zwischen kundenseitigen Innen- und Außenringen.

Bremsen (Katalog 46)

Industrie-Scheibenbremsen

Federbetätigt – pneumatisch, hydraulisch, elektromagnetisch oder handgelüftet.

Industrie-Scheibenbremsen

Pneumatisch betätigt – federgelüftet.

Industrie-Scheibenbremsen

Hydraulisch betätigt – un- oder federgelüftet.

Industrie-Scheibenbremsen

Federbetätigt – hydraulisch gelüftet.

Klemmeinheiten

Federbetätigt – hydraulisch oder pneumatisch gelüftet. Zum Sichern und Positionieren axial bewegter Stangen.

Welle-Nabe-Verbindungen (Katalog 36)

Zweiteilige Schrumpfscheiben

Außenspannverbindung zur einfachen und sicheren Montage ohne Drehmomentschlüssel.

Dreiteilige Schrumpfscheiben

Außenspannverbindung zur spielfreien Verbindung von Hohlwellen mit Wellenzapfen.

Konus-Spannelemente

Innenspannverbindung für hohe Drehmomente bei geringem Platzbedarf.

Sternscheiben

Ideale Welle-Nabe-Verbindung für häufiges Spannen und Lösen.

Sternfedern

Axialfederelement zur Vorspannung von Kugellagern.

Überlastkupplungen (Katalog 45)

Drehmomentbegrenzer mit Schraubflächen

Zuverlässige Überlastsicherung für raue Betriebsbedingungen.

Drehmomentbegrenzer mit Rollen

Mit Doppelrollen oder Einfachrollen. Durchratschend oder ausschaltend, auch für 360° Synchronlauf.

Drehmomentbegrenzer mit Kugeln

Zuverlässige Überlastsicherung mit höchster Ansprech genauigkeit. Auch spielfrei.

Rutschnaben

RIMOSTAT®-Rutschnabe für gleichbleibendes Rutschmoment. Tellerfeder-Rutschnabe als Einfachlösung.

Kraftbegrenzer

Zuverlässiger axialer Überlastschutz in Schubund Zugstangen.

Wellenkupplungen (Katalog 44)

Flanschkupplungen

Starre, leicht lösbare Wellenkupplung mit spielfreien Konus-Spannverbindungen.

Starre Wellenkupplungen

Starre, leicht lösbare Wellenkupplung mit spielfreier Konus-Spannverbindung.

Drehstarre Ausgleichkupplungen

Große zulässige Radial- und Winkelverlagerungen. Kleinste Rückstellkräfte.

Drehstarre Ausgleichkupplungen

Große zulässige Radial- und Winkelverlagerungen. Kleinste Rückstellkräfte.

Spanntechnik

(Katalog 10)

Scheibenblöcke

Komplett-Spannzeuge basierend auf dem einzigartigen Spannprinzip der RINGSPANN-Spannscheibe.

Kegelbüchsen

Kegelhülsen

Komplett-Spannzeuge zum Spannen von massiven Werkstücken auch auf sehr kurzen Spannlängen.

Flachkörper

Sehr kurz bauende Komplett-Spannzeuge zum Spannen massiver Werkstücke mit großem Spanndurchmesser und sehr kurzen Einspanntiefen.

${\bf Spannkupplungen}$

Zum schnellen Wechseln und präzisen Spannen von Profilwalzen oder Druckzylindern in Druckmaschinen des Tiefund Flexodrucks.